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Abstract

In this work we derive the copulas related to vectors coming from the so-called chaotic
stochastic processes. These are defined by the iteration of certain piecewise monotone func-
tions of the interval [0, 1] to some initial random variable. We study some of its properties
and present some examples. Since often these type of copulas do not have closed formulas,
we provide a general method of approximation which converges uniformly to the true cop-
ula. Our results cover a wide class of processes, including the so-called Manneville-Pomeau
processes. The general theory is applied to the parametric estimation in certain chaotic
processes and we also present a Monte Carlo study.
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1 Introduction

Let T : [0, 1] → [0, 1] be a smooth function of the interval [0, 1] and suppose there exists an
absolutely continuous T -invariant probability measure, say, µT . Let U0 be distributed as µT .
We can define a stochastic process by setting Xt := ϕ

(
T t(U0)

)
, t ∈ N, for a given µT -integrable

function ϕ : [0, 1]→ R. This type of stochastic process has been applied in a variety of problems
from rock drilling (see Lasota and Mackey, 1994 and references therein) to intermittency in
human cardiac rate (see Zebrowsky, 2001). Realizations of this type of process usually present
complex dynamics, chaotic behavior and instability with respect to the initial point X0.

In this work we study the copulas related to random vectors obtained from these type of
stochastic process. More specifically, we are interested in the case where the transformation T
is a piecewise monotone function of the interval and ϕ is a strictly monotone function. Our
results cover a wide class of stochastic process, such as the so-called Manneville-Pomeau process
(studied in Lopes and Pumi, 2013) and the process related to the tent transformation (see
Example 6.2) among many others (see, for instance, Lasota and Mackey, 1994).

The present work greatly generalizes the results in Lopes and Pumi (2013), where the au-
thors derive and study the copulas related to Manneville-Pomeau processes, by considering T
belonging to a certain general class of piecewise smooth transformations which can have either
increasing, decreasing, or monotone full branches. We consider the important bidimensional
case as well as the multidimensional case. As the problem of existence of an invariant mea-
sure for a given transformation is usually a difficult one, often the copulas derived do not have
closed formulas. In that case, we have to rely on approximations to study these copulas. In
this direction, we develop a somewhat general approximation to the copulas which is shown to
converge uniformly to the theoretical one. The problem of random variate generation of the
copulas presented here is also addressed. As an application of the general theory, the problem of
parametric estimation in certain chaotic process is discussed and an estimation procedure moti-
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2 Copulas Related to Piecewise Monotone Functions

vated by the results obtained in this paper is proposed. To assess the finite sample performance
of the proposed estimator, a Monte Carlo study is performed. Examples are also provided.

The paper is organized as follows: in the next section, we briefly review some concepts
and results on copulas and introduce the class of stochastic processes we will be interested
in this work. Section 3 is devoted to determine the copulas related to any pair (Xt, Xt+h)
coming from the aforementioned processes and to explore some consequences. In section 4,
some multidimensional extensions are shown. In Section 5 we develop a general approximation
to the copulas derived in Section 3 and prove its uniform convergence to the true copula. Random
variate generation is also addressed. Section 6 brings two examples. In Section 7 we apply the
general theory of Section 3 to the problem of parametric estimation in certain chaotic processes.
A Monte Carlo study is also performed. The conclusions are reserved to Section 8.

2 Preliminaries

We begin by establishing the necessary mathematical framework. We say that a map T : I → I,
where I := [0, 1], is of class C1+α

1-1 if it is a one-to-one function of class C1+α (the class of C1

functions whose derivative is α-Hölder continuous), for α ∈ (0, 1). A map T : I → I, is said to
be finitely piecewise C1+α

1-1 if there exists a partition {Ik}sk=1 of I such that the restriction of T
to the interior of each Ik is a C1+α

1-1 function. Each Ik will be called a node of T . If, in addition,
the restriction of T to the interior of each Ik is monotone (increasing or decreasing), then we
call T a finitely piecewise monotone (increasing or decreasing) C1+α

1-1 function.

For consistency, when we call for a partition relative to a map T , we shall always mean the
maximal partition {Ik}, in the sense that if {Ĩk} is another partition such that T restricted to
the interior of each Ĩk is a C1+α

1-1 function, then, for each k, there exists j such that Ĩk ⊆ Ij . We
shall refer as the net relative to the nodes of a (finitely piecewise C1+α

1-1 ) map T , the collection
of all endpoints of each Ik in the maximal partition {Ik}. Notice that the net of the nodes of T
are discontinuity points of T , except, perhaps, the points 0 and 1. For the sake of simplicity, but
without loss of generality, we shall assume that Ik = [ak−1, ak) and that T is right continuous,
except at 1 where we assume that T is left continuous.

Given an arbitrary function T : I → I one can ask whether there exists a smooth T -invariant
probability measure. The problem of establishing the existence of such measure is often a hard
one. The literature on the subject is relatively extense and has a long history. Rényi (1957) shows
that, for transformation of the form Ta(x) = ax (mod 1), a unique absolutely continuous invariant
probability measure always exists. Remember that a map T : I → I is said to be uniformly
expanding in I if |T ′(x)| ≥ κ > 1, for all x ∈ I, whenever T ′ is defined. Lasota and Yorke (1973)
show that for piecewise smooth uniformly expanding function there always exists an absolutely
continuous invariant measure. Under more stringent, but easily verifiable conditions, Pianigiani
(1980) show that this measure is unique and it is a probability measure. However, many non-
expanding functions are known to possess such a measure. Sufficient conditions for this to
happen for non-expanding functions can be found, for instance, in Bowen (1979), Pianigiani
(1980) and Pianigiani (1981). We shall denote the space of all transformations T : I → I for
which an absolutely continuous invariant probability measure exists by S . More specifically,
let us define the following spaces:

T l :=
{
T ∈ S and T is finitely piecewise monotone C1+α

1-1 function
}

;

T ↓ :=
{
T ∈ S and T is finitely piecewise decreasing C1+α

1-1 function
}

;

T ↑ :=
{
T ∈ S and T is finitely piecewise increasing C1+α

1-1 function
}
.

Certainly T ↑
⋂

T ↓ = ∅ and T ↑
⋃

T ↓ ( T l. Also notice that if T ∈ T l, T has only full branches in
the sense that T : Ik → [0, 1) is onto. When T ∈ T l and has s > 1 nodes, for t = 1, · · · , s, we
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shall define

K↑t := {k : T t|Ik is increasing} and K↓t := {k : T t|Ik is decreasing}, (2.1)

where, as usual, T k = T ◦ T k−1 denotes the k-fold composition. Clearly, K↑t
⋂
K↓t = ∅, K↑t = ∅,

if T ∈ T ↓ and K↓t = ∅, if T ∈ T ↑.

In this paper we are interested in studying the copulas related to the following class of
stochastic process.

Definition 2.1. Let T ∈ T l and let µT be a T -invariant probability measure. Let U0 be a
random variable distributed according to µT and ϕ : I → R be a function in L1(µT ). The
stochastic process given by

Xt := (ϕ ◦ T t)(U0), for all t ∈ N, (2.2)

is called a T lϕ -induced process (or T lϕ process, for short).

By taking, in Definition 2.1, T ∈ T ↑ or T ∈ T ↓ instead, we define a T ↑ϕ -induced process and a
T ↓ϕ -induced process, respectively, or, for short, T ↑ϕ and T ↓ϕ process. The processes just defined are
stationary since µT is T -invariant and absolutely continuous. the relationshipe betweem=n Xt

and U0 is sometimes called mutual complete dependence as, for instance, in Siburg and Stoimev
(2010).

Regarding copulas, a n-dimensional copula is a distribution function whose marginals are
uniformly distributed on I and whose support is the n-dimensional cube In. The usefulness of
copulas lies on its ability to model dependence independently of the marginals and vice-versa.
The literature on the subject has grown enormously, especially in the last decade, due to the
discover of several applications of copulas on many areas such as finance, actuarial science,
time series, hydrology, among others. For instance, an interesting application of copulas in
finances can be found in Wang et al. (2009), where the authors present one-factor models to
pricing credit default index swap tranches and collateralized debt obligations, based on heavy
tailed copulas especially designed to allow a continuous time tail-fatness control. We refer the
reader to Cherubini et al. (2004), McNeil et al. (2005) and references therein for applications
in finances, Frees and Valdez (1998) for a review on the use of copula on actuarial sciences,
Chen and Fan (2006) for an interesting copula based on a unidimensional time series model and
Salvadori et al, (2007) for applications of copulas in hydrology.

Among others, the invariance by almost everywhere increasing function and the simple func-
tional form the copula takes when the transformation is decreasing almost everywhere are some
of the properties we shall use very often in what follows. In the next theorem, we summarize
these properties. The proof can be found in Nelsen (2006). In this work the measure implicit to
phrases like “almost everywhere” and “almost sure” will be the appropriate Lebesgue measure.

Theorem 2.1. Let C be any copula and let f1, · · · , fn be almost everywhere increasing functions.
Then Cf1(X1),··· ,fn(Xn)(u1, · · · , un) = CX1,··· ,Xn(u1, · · · , un). Moreover, if f and g are two almost
everywhere decreasing functions instead, then Cf(X),g(Y )(u, v) = u+ v − 1 +CX,Y (1− u, 1− v).

The next theorem, the so-called Sklar’s theorem, is the key result for copulas. See Schweizer
and Sklar (2005) for a sketch of the proof in the n-dimensional case, Durante et al. (2012, 2013)
for alternative proofs and Nelsen (2006) for a more detailed proof in the bidimensional case.

Theorem 2.2 (Sklar’s Theorem). Let X1, · · · , Xn be random variables with joint distribution
function H and marginals F1, · · · , Fn, respectively. Then, there exists a copula C such that,

H(x1, · · · , xn) = C
(
F1(x1), · · · , Fn(xn)

)
, for all (x1, · · · , xn) ∈ Rn.



4 Copulas Related to Piecewise Monotone Functions

If the Fi’s are continuous, then C is unique. Otherwise, C is uniquely determined on Ran(F1)×
· · · × Ran(Fn), where Ran(F ) denotes the range of the function F . The converse also holds.
Furthermore,

C(u1, · · · , un) = H
(
F

(−1)
1 (u1), · · · , F (−1)

n (un)
)
, for all (u1, · · · , un) ∈ In,

where for a function F , F (−1) denotes its pseudo-inverse given by F (−1)(x) := inf
{
u ∈ Ran(F ) :

F (u) ≥ x
}
.

For more details on the theory of copulas we refer the reader to Joe (1997) and Nelsen
(2006). Copulas are also in close connection to probabilistic metric spaces. See Schweizer and
Sklar (2005) for details on this matter.

3 Bidimensional case

In this section we shall investigate the bidimensional copulas associated to T ↑ϕ , T ↓ϕ and T lϕ
processes where ϕ will be taken to be an almost surely monotone function. As we will see later,
the multidimensional case is very similar to the bidimensional case, so we shall give special
attention to the latter.

Given T ∈ T l, we shall always fix an absolutely continuous T -invariant probability measure
and denote it by µT . Now let ϕ ∈ L1(µT ) be an almost surely increasing function and consider
{Xt}t∈N the T l process associated to T . For all t ∈ N, let Ft(·) be the distribution function of
Xt. By definition, for all x ∈ I

F0(x) := P(U0 ≤ x) = µT
(
[0, x]

)
.

Observe that the T -invariance of µT , implies that, for any t ∈ N, t > 0, and x ∈ I,

Ft(x) := P
(
T t(U0) ≤ x

)
= µT

(
(T t)−1

(
[0, x]

))
= µT

(
[0, x]

)
= F0(x). (3.1)

Also, µT � λ implies that µT is non-atomic and since T ∈ C1+α(I) implies the existence of a
continuous positive density for µT , Ft is continuous, increasing and its inverse is well defined.

Remark 3.1. Notice that, if T ∈ T l has s nodes, for t ≥ 0 T t will have st nodes and the
restriction of T t to each of its nodes (say {Ik}s

t

k=1) is a one-to-one function, so that on each Ik
its inverse is locally well defined. Now, we can conveniently define the inverse of T t at y ∈ (0, 1)
(y ∈ {0, 1} is trivial) as a piecewise function by setting Tt,k(y) := (T t)−1|Ik(y), so that

(T t)−1(y) =
(
(T t)−1|I1(y), · · · , (T t)−1|Ist (y)

)
=
(
Tt,1(y), · · · , Tt,st(y)

)
.

This is just a simple way of writing the inverse image of the singleton {y} by T t. With this
in mind, let y ∈ (0, 1) (y ∈ {0, 1} is trivial), t > 0, X be a random variable taking values in

I and {at,k}s
t

k=0 be the net associated to the nodes of T t. For T ∈ T ↑
⋃

T ↓, the solution of the
inequality T t(X) ≤ y in X can be written as X ∈ At,1(y)

⋃ · · ·⋃At,st(y), where

At,k(y) :=

{
[at,k−1, Tt,k(y)], if T ∈ T ↑,
[Tt,k(y), at,k], if T ∈ T ↓,

(3.2)

will be a proper closed subinterval of [at,k−1, at,k], for each k = 1, · · · , st. Notice that At,k(y)
is just the inverse image of [0, y] by the transformation T t restricted to its k-th node, that is,
At,k(y) = (T t)−1

(
[0, y]

)⋂
Ik.

The next result will be used several times during the work.
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Lemma 3.1. Let X be a random variable taking values in I and let T belong to either T ↑ or
T ↓ and suppose that T has s nodes. Then, for any t ∈ N and x ∈ I,

P
(
T t(X) ≤ x

)
= P

(
X ∈ ⋃ st

k=1At,k(x)
)

=

st∑
k=1

P
(
X ∈ At,k(x)

)
,

where the At,k’s are given by (3.2).

Proof: The result follows from Remark 3.1 and from the fact that the At,k’s are (pairwise)
disjoint. �

The case where T ∈T l\(T ↑
⋃

T ↓) is treated in the next lemma. As one could expect, it will
be a mix of the results in Lemma 3.1.

Lemma 3.2. Let X be a random variable taking values in I and distributed according to a
non-atomic distribution. Let T belong to T l \ (T ↑

⋃
T ↓) and suppose that T has s nodes. Then,

for any t ∈ N and x ∈ I,

P
(
T t(X) ≤ x

)
= P

(
X ∈ ⋃ st

k=1

(
A↑t,k(x)

⋃
A↓t,k(x)

))
=

st∑
k=1

(
P(X ∈ A↑t,k(x)) + P(X ∈ A↓t,k(x))

)
,

where

A↑t,k(x) :=

{
[at,k−1, Tt,k(x)], k ∈ K↑t ,

∅, otherwise,
and A↓t,k(x) :=

{
[Tt,k(x), at,k], k ∈ K↓t ,

∅, otherwise.
(3.3)

Proof: Let A↑t,k and A↓t,k be as in expression (3.3). Since T ∈ T l \ (T ↑
⋃

T ↓), K↑t ( {1, · · · , st}
and K↓t ( {1, · · · , st} are non-empty. To prove the first equality, notice that

P
(
T t(X) ≤ x

)
= P

(
X ∈

(⋃
i∈K↑t

A↑t,i(x)
)⋃ (⋃

j∈K↓t
A↓t,j(x)

))
= P

(
X ∈ ⋃ st

k=1

(
A↑t,k(x)

⋃
A↓t,k(x)

))
.

As for the second, one can write

P
(
T t(X) ≤ x

)
= P

(
X ∈

(⋃
i∈K↑t

A↑t,i(x)
)⋃ (⋃

j∈K↓t
A↓t,j(x)

))
= P

(
X ∈

(⋃
i∈K↑t

A↑t,i(x)
))

+ P
(
X ∈

(⋃
j∈K↓t

A↓t,j(x)
))
−

−P
(
X ∈

(⋃
i∈K↑t

A↑t,i(x)
)⋂ (⋃

j∈K↓t
A↓t,j(x)

))
. (3.4)

Now upon noticing that A↑t,i(x)
⋂
A↑t,j(x) = ∅ and A↓t,i(x)

⋂
A↓t,j(x) = ∅ whenever i 6= j and by

the definition of A↑t,i and A↓t,i, it follows that

P
(
X ∈ ⋃

i∈K↑t
A↑t,i(x)

)
= P

(
X ∈ ⋃ st

k=1A
↑
t,i(x)

)
=

st∑
k=1

P
(
X ∈ A↑t,k(x)

)
and similarly P

(
X ∈

(⋃
j∈K↓t

A↓t,j(x)
))

=
∑st

k=1P
(
X ∈A↓t,k(x)

)
. At this point, upon substituting

these two equalities into (3.4), the lemma will be proved if we show that

P
(
X ∈

(⋃
i∈K↑t

A↑t,i(x)
)⋂ (⋃

j∈K↓t
A↓t,j(x)

))
= 0.

This follows upon observing that

P
(
X∈

(⋃
i∈K↑t

A↑t,i(x)
)⋂ (⋃

j∈K↓t
A↓t,j(x)

))
= P

(
X ∈ ⋃ st

k=1

(
A↑t,k(x)

⋂
A↓t,k(x)

))
≤ P

(
X∈

(⋃ st

k=0{at,k}
)⋃ (⋃ st

k=1{Tt,k(x)}
))

= 0,

since, by assumption, X has a non-atomic distribution. This completes the proof. �
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Remark 3.2. Lemma 3.2 is the analogous of Lemma 3.1 in the case where T ∈T l\(T ↑
⋃

T ↓), but
with an extra condition: we had to impose the condition of non-atomicity in the distribution
of X. The non-atomicity condition is necessary because the intersection in (3.4) may be non-
empty, in which case it will contain only a finite number of isolated points. However, in our
work we will always assume that the underline distribution is absolutely continuous, so the extra
imposed condition has no impact in the development of the work.

Proposition 3.1. Let T ∈ T l, µT be a T -invariant probability measure and let U0 be distributed

as µT . Then, for any t, h ∈ N, h 6= 0,
(
T t(U0), T

t+h(U0)
) d

=
(
U0, T

h(U0)
)

and CT t(U0),T t+h(U0) =
CU0,Th(U0).

Proof: The first result follows from the fact that, for T ∈ T l and ϕ ∈ L1(µT ), the T lϕ process
associated is stationary. In particular, the result holds for ϕ taken to be the identity map. The
second result is a consequence of the process’ stationarity and of Sklar’s theorem. �

As for the copulas related to T lϕ processes, for ϕ almost surely increasing, the following result
holds.

Corollary 3.1. Let T ∈ T l, µT be a T -invariant probability measure and ϕ ∈ L1(µT ) be an
almost everywhere increasing function. Let {Xt}t∈N be the associated T lϕ process. Then, for any
t, h ∈ N, h 6= 0,

CXt,Xt+h
(u, v) = CX0,Xh

(u, v) = CU0,Th(U0)(u, v),

everywhere in I2.

Proof: Direct consequence of Proposition 3.1 and Theorem 2.1. �

Remark 3.3. Notice that the result in Corollary 3.1 actually holds in a much more general
context when combined with Proposition 3.1, but for our purposes, we only need it as stated.

Now we turn our attention to determining the copula associated to any pair (Xp, Xq) of

random variables, for any p, q ∈ N, obtained from a T lϕ process with ϕ increasing almost every-

where. Let T ∈ T lϕ and assume that T has s ≥ 1 nodes. Let µT be a T -invariant probability
measure and F0 be as before. In order to simplify the notation, let us define the functions
Fh,k : I → [F0(ah,k−1), F0(ah,k)] by

Fh,k(x) := F0

(
Th,k

(
F−10 (x)

))
, (3.5)

for h > 0 and k ∈ {1, · · · , sh}. For a given set S, we also define δS(u) as being 1, if u ∈ S, and
0 otherwise. We start with the case T ∈T l\(T ↑

⋃
T ↓). We shall denote the copula related to a

given T lϕ process {Xt}t∈N by C↑Xt,Xt+h
, C↓Xt,Xt+h

and ClXt,Xt+h
when T belongs to T ↑, T ↓ and

T l\(T ↑
⋃

T ↓), respectively.

Proposition 3.2. Let T ∈T l\(T ↑
⋃

T ↓), µT be a T -invariant probability measure and ϕ ∈ L1(µT )
be an almost everywhere increasing function. Let {Xt}t∈N be the associated T lϕ process. If we

let {ah,k}s
h

k=0 be the net associated to the nodes of T h, then

ClXt,Xt+h
(u, v) =

∑
k∈n↑0

[
Fh,k(v)− F0(ah,k−1)

]
+
[

min
{
u,Fh,n0

(v)
}
− F0(ah,n0−1)

]
δ
K
↑
h

(n0) +

+
∑
k∈n↓0

[
F0(ah,k)−Fh,k(v)

]
+ max

{
0, u−Fh,n0

(v)
}
δ
K
↓
h

(n0), (3.6)

where n0 := n0(u;h) =
{
k : u ∈

[
F0(ah,k−1), F0(ah,k)

)}
, and, with K↑h and K↓h as in (2.1),

n↑0 := {1, · · · , n0 − 1}⋂K↑h and n↓0 := {1, · · · , n0 − 1}⋂K↓h. (3.7)
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Proof: We start by determining the copula associated to the pair
(
U0, T

h(U0)
)
. Let T ∈

T l\(T ↑
⋃

T ↓), µT be a T -invariant probability measure and ϕ ∈ L1(µT ) be an almost everywhere
increasing function. Also let {Xt}t∈N be the associated T lϕ process and H0,h(·, ·) denote the

distribution function of the pair
(
U0, T

h(U0)
)
. Notice that, by Lemma 3.2, we have

H0,h(x, y) = P(U0 ≤ x, Th(U0) ≤ y) = P
(
U0 ≤ x, U0 ∈

⋃ sh

k=1Ah,k(y)
)

= P
(
U0 ∈ [0, x]

⋂⋃ sh

k=1Ah,k(y)
)
.

=

sh∑
k=1

[
P
(
U0 ∈ A↑h,k(y)

⋂
[0, x]

)
+ P

(
U0 ∈ A↓h,k(y)

⋂
[0, x]

)]
,

where A↑h,k and A↓h,k are given in (3.3). Set n1 := n1(x;h) =
{
k : x ∈ [ah,k−1, ah,k)

}
and let

n↑1 := {1, · · · , n1 − 1}⋂K↑h and n↓1 := {1, · · · , n1 − 1}⋂K↓h,

with K↑h and K↓h as in (2.1). Notice that n↑1
⋂
n↓1 = ∅ and n↑1

⋃
n↓1 = {1, · · · , n1 − 1}. It follows

that

H0,h(x, y) =

sh∑
k=1

[
P
(
U0∈A↑h,k(y)

⋂
[0, x]

)
+ P

(
U0∈A↓h,k(y)

⋂
[0, x]

)]
=

∑
k∈n↑1

P
(
U0∈A↑h,k(y)

⋂
[0, x]

)
+ P

(
U0∈A↑h,n1

(y)
⋂

[ah,n1
, x]︸ ︷︷ ︸

=:Q↑

)
δ
K
↑
h

(n1) +

+
∑
k∈n↓1

P
(
U0∈A↓h,k(y)

⋂
[0, x]

)
+ P

(
U0∈A↓h,n1

(y)
⋂

[ah,n1 , x]︸ ︷︷ ︸
=:Q↓

)
δ
K
↓
h

(n1)

=
∑
k∈n↑1

µT
([
ah,k−1, Th,k(y)

])
+ µT (Q↑)δ

K
↑
h

(n1) +

+
∑
k∈n↓1

µT
([
Th,k(y), ah,k−1

])
+ µT (Q↓)δ

K
↓
h

(n1),

where

Q↑ =
[
ah,n1−1,min

{
x, Th,n1

(y)
}]

and Q↓ =

{
∅, if x < Th,n1

(y),[
Th,n1

(y), x
]
, if x ≥ Th,n1

(y),

so that

H0,h(x, y) =
∑
k∈n↑1

[
F0

(
Th,k(y)

)
− F0(ah,k−1)

]
+
∑
k∈n↓1

[
F0(ah,k)− F0

(
Th,k(y)

)]
+

+
[
F0

(
min

{
x, Th,n1

(y)
})
− F0(ah,n1−1)

]
δ
K
↑
h

(n1) + max
{

0, F0(x)− F0(Th,n1
(y))

}
δ
K
↓
h

(n1).

Upon noticing that F0

(
min

{
x, Th,n1(y)

})
= min

{
F0(x), F0

(
Th,n1(y)

)}
, by Sklar’s Theorem, it

follows that

Cl
U0,Th(U0)

(u, v) = H0,h

(
F−10 (u), F−1h (v)

)
= H0,h

(
F−10 (u), F−10 (v)

)
=

∑
k∈n↑0

[
Fh,k(v)− F0(ah,k−1)

]
+
[

min
{
u,Fh,n0

(v)
}
− F0(ah,n0−1)

]
δ
K
↑
h

(n0) +

+
∑
k∈n↓0

[
F0(ah,k)−Fh,k(v)

]
+ max

{
0, u−Fh,n0(v)

}
δ
K
↓
h

(n0),

where n0 := n1
(
F−10 (u);h

)
and n↑0 and n↓0 are given by (3.7). Now by Proposition 3.1 and

Corollary 3.1, ClXt,Xt+h
= Cl

U0,Th(U0)
and the desired result follows. �
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Remark 3.4. Let {ak}k∈N be an arbitrary sequence of real numbers and let D ⊆ N be a set of
indexes. As usual, if D = ∅, we shall set

∑
k∈D ak = 0.

Next we shall derive the copula associated to any pair (Xp, Xq), for any p, q ∈ N, of random
variables obtained from a T ↑ϕ or T ↓ϕ process with ϕ increasing almost everywhere. The results
follow from a specialization of Proposition 3.2.

Proposition 3.3. Let T ∈ T ↑
⋃

T ↓, µT be a T -invariant probability measure and ϕ ∈ L1(µT )
be an almost everywhere increasing function. Let {Xt}t∈N be the associated T ↑ϕ or T ↓ϕ process.

If we let {ah,k}s
h

k=0 be the net associated to the nodes of T h and n0 := n0(u;h) =
{
k : u ∈[

F0(ah,k−1), F0(ah,k)
)}

, then the following is true:

(i). If T ∈ T ↑, then, for any t, h ∈ N, h 6= 0 and (u, v) ∈ I2,

C↑Xt,Xt+h
(u, v) =

(
n0−1∑
k=1

Fh,k(v)− F0(ah,k−1)

)
δN∗(n0 − 1)+

+ min
{
u,Fh,n0(v)

}
− F0(ah,n0−1), (3.8)

where N∗ := N\{0}.

(ii). If T ∈ T ↓ instead, then, for any t, h ∈ N, h 6= 0 and (u, v) ∈ I2,

C↓Xt,Xt+h
(u, v) =

(
n0−1∑
k=1

F0(ah,k)−Fh,k(v)

)
δN∗(n0 − 1) + max

{
0, u−Fh,n0(v)

}
. (3.9)

Proof: If T ∈ T ↑, (i) follows from Proposition 3.2 by noticing that K↓h = ∅ while if T ∈ T ↓,
the opposite happens, namely, K↑h = ∅ which implies (ii). �

Remark 3.5. For computational purposes, it can be advantageous to write copulas (3.6), (3.8)
and (3.9) explicitly as a function of µT . In this case, (3.6) becomes

ClXt,Xt+h
(u, v) =

∑
k∈n↑0

µT

([
ah,k−1, Th,k

(
F−10 (v)

)])
+

+ µT

([
ah,n0−1,min

{
F−10 (u), Th,n0

(
F−10 (v)

)}])
δ
K
↑
h

(n0) +

+
∑
k∈n↓0

µT

([
Th,k

(
F−10 (v)

)
, ah,k

])
+ µT

([
Th,n0

(
F−10 (v)

)
, F−10 (u)

]+)
δ
K
↓
h

(n0), (3.10)

where [a, b]+ equals [a, b], if b ≥ a, and ∅ otherwise. In their turn, copulas (3.8) and (3.9) become
respectively

C↑Xt,Xt+h
(u, v) =

n0−1∑
k=1

µT

([
ah,k−1, Th,k

(
F−10 (v)

)])
δN∗(n0 − 1) +

+ µT

([
ah,n0−1,min

{
F−10 (u), Th,n0

(
F−10 (v)

)}])
,

and

C↓Xt,Xt+h
(u, v) =

n0−1∑
k=1

µT

([
Th,k

(
F−10 (v)

)
, ah,k

])
δN∗(n0 − 1) + µT

([
Th,n0

(
F−10 (v)

)
, F−10 (u)

]+)
.

In the next lemma we show that the relation CXt,Xt+h
= CX0,Xh

, valid when ϕ is increasing,
still holds in the decreasing case.
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Lemma 3.3. Let T ∈ T l and let {Xt}t∈N be the associated T lϕ process for ϕ ∈ L1(µT ) an almost
surely decreasing function. Then, the relation

CXt,Xt+h
(u, v) = u+ v − 1 + CU0,Th(U0)(1− u, 1− v) = CX0,Xh

(u, v), (3.11)

holds for all (u, v) ∈ I2.

Proof: In Proposition 3.1, we have shown that CT t(U0),T t+h(U0) = CU0,Th(U0) (independently of

ϕ). Now, since the inverse of an almost everywhere decreasing function is still decreasing almost
everywhere, upon applying Theorem 2.1, it follows that

CXt, Xt+h
(u, v) = Cϕ−1(T t(U0)), ϕ−1(T t+h(U0))(u, v) = u+ v − 1 + CT t(U0), T t+h(U0)(1− u, 1− v),

which proves the first equality. As for the second, it suffices to notice that

CX0,Xh
(u, v) = Cϕ(U0),ϕ(Th(U0))(u, v) = u+ v − 1 + CU0, Th(U0)(1− u, 1− v),

everywhere in I2, by Theorem 2.1, and the result follows by Proposition 3.1. �

In the next propositions we present the copulas related to T lϕ processes in the case where
ϕ ∈ L1(µt) is an almost everywhere decreasing function. In this case, we use the same notation
for the copulas as before, but we add an asterisk in order to emphasize the difference on ϕ. We
start by considering T ∈T l\(T ↑

⋃
T ↓).

Proposition 3.4. Let T ∈ T l \ (T ↑
⋃

T ↓) be a transformation with s > 1 nodes, µT be a T -
invariant probability measure and ϕ ∈ L1(µT ) be an almost everywhere decreasing function. Let

{Xt}t∈N be the associated T lϕ process. If we let {ah,k}s
h

k=0 be the net associated to the nodes of

T h, then

Cl∗Xt,Xt+h
(u, v) = u+ v − 1 +

∑
k∈n↑∗0

[
Fh,k(1− v)− F0(ah,k−1)

]
+
∑
k∈n↓∗0

[
F0(ah,k)−Fh,k(1− v)

]
+

+
[

min
{

1− u,Fh,n∗
0
(1− v)

}
− F0(ah,n∗

0−1)
]
δ
K
↑
h

(n∗0) +

+ max
{

0, 1− u−Fh,n∗
0
(1− v)

}
δ
K
↓
h

(n∗0), (3.12)

where n∗0 := n∗0(u;h) =
{
k : u ∈

[
1− F0(ah,k), 1− F0(ah,k−1)

)}
,

n↑∗0 := {1, · · · , n∗0 − 1}⋂K↑h and n↓∗0 := {1, · · · , n∗0 − 1}⋂K↓h.

Proof: By Lemma 3.3, we have

Cl∗Xt,Xt+h
(u, v) = u+ v − 1 + Cl

U0,Th(U0)
(1− u, 1− v) (3.13)

so that the result follows by Proposition 3.2 (with ϕ as the identity map) upon substituting
(3.6) into (3.13). �

Proposition 3.5. Let T ∈ T ↑
⋃

T ↓, µT be a T -invariant probability measure and ϕ ∈ L1(µT )
be an almost everywhere decreasing function. Let {Xt}t∈N be the associated T ↑ϕ or T ↓ϕ process.

If we let {ah,k}s
h

k=0 be the net associated to the nodes of T h and n∗0 := n∗0(u;h) =
{
k : u ∈[

1− F0(ah,k), 1− F0(ah,k−1)
)}

, then the following is true:

(i). If T ∈ T ↑, then, for any t, h ∈ N, h 6= 0 and (u, v) ∈ I2,

C↑∗Xt,Xt+h
(u, v) = u+ v − 1 +

n∗
0−1∑
k=1

Fh,k(1− v)− F0(ah,k−1)

 δN∗(n∗0 − 1) +

+ min
{

1− u,Fh,n∗
0
(1− v)

}
− F0(ah,n∗

0−1). (3.14)
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(ii). If T ∈ T ↓, then, for any t, h ∈ N, h 6= 0 and (u, v) ∈ I2,

C↓∗Xt,Xt+h
(u, v) = u+ v − 1 +

n∗
0−1∑
k=1

F0(ah,k)−Fh,k(1− v)

 δN∗(n∗0 − 1) +

+ max
{

0, 1− u−Fh,n∗
0
(1− v)

}
. (3.15)

Proof: Immediate from Proposition 3.4 and (3.13). �

A question that naturally arises is what are the support of the copulas just derived? To
answer that, the following notation will be useful. Let T ∈ T ↑

⋃
T ↓ and F0 be the distribution

associated to a T -invariant probability measure. Assume that T has s > 1 nodes and let h be a
positive integer. We define, for all k ∈ {1, · · · , sh}, functions `↑h,k, `

↓
h,k :

[
F0(ah,k−1), F0(ah,k)

]
→

I by setting

`↑h,k(x) :=
x− F0(ah,k−1)

F0(ah,k)− F0(ah,k−1)
and `↓h,k(x) :=

F0(ah,k)− x
F0(ah,k)− F0(ah,k−1)

and `↑∗h,k, `
↓∗
h,k :

[
1− F0(ah,k), 1− F0(ah,k−1)

]
→ I by setting

`↑∗h,k(x) :=
x+ F0(ah,k−1)− 1

F0(ah,k)− F0(ah,k−1)
and `↓∗h,k(x) :=

1− F0(ah,k)− x
F0(ah,k)− F0(ah,k−1)

.

Observe that `↑h,k is just the linear function joining (F0(ah,k−1), 0) and (F0(ah,k), 1), while `↓h,k
joins (F0(ah,k−1), 1) and (F0(ah,k), 0). In the next proposition we provide a characterization for
the support of the copulas derived so far.

Proposition 3.6. Let T ∈ T l and µT be a T -invariant probability measure. For ϕ1 ∈ L1(µT )
an almost everywhere increasing function and ϕ2 ∈ L1(µT ) an almost everywhere decreasing
function, let {Xt}t∈N and {Yt}t∈N denote respectively the associated T lϕ1 and T lϕ2 process. Also
suppose that T has s ≥ 1 nodes. Then, for any t, h ∈ N and h > 0,

supp{ClXt,Xt+h
} =

( ⋃
k∈K↑

{(
u, `↑h,k(u)

)
: u ∈ Rh,k

})⋃( ⋃
k∈K↓

{(
u, `↓h,k(u)

)
: u ∈ Rh,k

})
,

and
supp{ClYt,Yt+h

} =
( ⋃
k∈K↑

{(
u, `↓∗h,k(u)

)
: u ∈ R∗h,k

})⋃( ⋃
k∈K↓

{(
u, `↑∗h,k(u)

)
: u ∈ R∗h,k

})
,

where Rh,k :=
[
F0(ah,k−1), F0(ah,k)

]
and R∗h,k :=

[
1− F0(ah,k), 1− F0(ah,k−1)

]
.

Proof: Let R = [u1, u2] × [v1, v2] be a rectangle in I2. First assume that T ∈ T ↑ϕ1
and let

V
C↑X

(R) denote the CXt,Xt+h
-volume of R. Let k ∈ {1, · · · , sh} be fixed and since for any copula

C, the C-volume is a (doubly stochastic) measure, we can assume without loss of generality that
ui ∈ Rh,k, for i = 1, 2, so that n0 = k for all terms in the expression of V

C↑X
(R). Hence the

summands and constants on the copula cancel out so that we have

V
C
↑
X

(R) = min
{
u1,Fh,k(v1)

}
+ min

{
u2,Fh,k(v2)

}
− min

{
u1,Fh,k(v2)

}
−min

{
u2,Fh,k(v1)

}
= VM

(
[u1, u2]×

[
Fh,k(v1),Fh,k(v2)

])
,

where M(u, v) = min{u, v} is the Frechèt upper bound copula, whose support is the main
diagonal in I2. Since [u1, u2] ×

[
Fh,k(v1),Fh,k(v2)

]
⊆ R2

h,k, it follows that V
C↑X

(R) > 0 if, and

only if, R
⋂{(

u, `↑h,k(u)
)

: u ∈ Rh,k
}
6= ∅.

Now assume that T ∈ T ↓ϕ1
and, considering a rectangle R as before and ui ∈ Rh,k, let V

C↓X
(R)

denote its CXt,Xt+h
-volume. Again the summands and constants on the copula cancel out and

we have

V
C
↓
X

(R) = max
{

0, u1 −Fh,k(v1)
}

+ max
{

0, u2 −Fh,k(v2)
}
−max

{
0, u1 −Fh,k(v2)

}
−
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−max
{

0, u2 −Fh,k(v1)
}

= VW
(
[u1, u2]×

[
1−Fh,k(v1), 1−Fh,k(v2)

])
,

where W (u, v) = max{0, u + v − 1} is the Frechèt lower bound copula, whose support is the
secondary diagonal in I2. Since [u1, u2]×

[
1−Fh,k(v1), 1−Fh,k(v2)

]
⊆ Rh,k × R∗h,k, it follows

that V
C↓X

(R) > 0 if, and only if, R
⋂{(

u, `↓h,k(u)
)

: u ∈ Rh,k
}
6= ∅.

Now suppose T ∈T l\(T ↑
⋃

T ↓) and let V
C
l
X

(R) denote the CXt,Xt+h
-volume of R. Let k be

fixed as before and let ui ∈ Rh,k, i = 1, 2. We can write

V
C
l
X

(R) = V
C
↑
X

(R)δ
K
↑
h

(n0) + V
C
↓
X

(R)δ
K
↓
h

(n0),

so that the result follows from the previous cases and by observing that we can write I =⋃sh

k=1Rh,k.

As for T ∈ T lϕ2 , the result follows similarly as the previous case, by noticing that for a
rectangle R as before and ui ∈ R∗h,k, i = 1, 2,

V
C
↑
Y

(R) = VM
(
[1− u2, 1− u1]×

[
Fh,k(1− v2),Fh,k(1− v1)

])
and

V
C
↓
Y

(R) = VW
(
[1− u2, 1− u1]×

[
1−Fh,k(1− v2), 1−Fh,k(1− v1)

])
,

and by applying standard arguments. This completes the proof. �

As an immediate consequence, we have

Corollary 3.2. Let T ∈ T l and µT be a T -invariant probability measure. For ϕ ∈ L1(µT ) an
almost everywhere monotone function, let {Xt}t∈N be the associated T lϕ process. Then ClXt,Xt+h

}
is singular with respect to the bidimensional Lebesgue measure.

Proof: This follows by noticing that λ
(
supp{ClXt,Xt+h

}
)

= 0, where λ denotes the Lebesgue

measure on I2. �

A map T ∈ T l can have several different absolutely continuous T -invariant probability
measures. This implies that, for a single given T ∈ T l, the associated T lϕ process can have
several different copulas associated to it depending on the choice of the T -invariant probability
measure. This happens because U0, which fundamentally defines the probability structure of
the process, also depends completely on the choice of the T -invariant probability measure. We
also remark that the formulas just presented are all derived from the relation CX0,Tn(U0)(u, v) =
λ
(
[0, u]

⋂
(Tn)−1

(
[0, v]

))
.

4 Multidimensional Case

In this section we shall extend our results from the previous bidimensional set up to a mul-
tidimensional one. That is, in this section we are interested in deriving the copulas related
to n-dimensional vectors (Xt1 , · · · , Xtn) coming from a T lϕ process for ϕ an almost everywhere
monotone function. It turns out that the bidimensional and the multidimensional case have
more in common than one could expect and much of the work will be built over the results of
last section.

First, let us establish some useful notation. Let a, b ∈ N with a < b. We shall write a:b :=
{a, · · · , b}, xa:b := (xa, · · · , xb) and, for a function f , we shall write f(xa:b) :=

(
f(xa), · · · , f(xb)

)
.

Again we shall denote the distribution of U0 by F0. The next proposition will be useful to simplify
the proofs of the main results of this section and in establishing notation.
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Proposition 4.1. Let T ∈ T l\(T ↑
⋃

T ↓) and suppose T has s ≥ 1 nodes. Denote by {at,k}s
t

k=0
the net associated to the nodes of T t. Let t, h1, · · · , hn ∈ N, 0 < h1 < · · · < hn, set t = (t, t +
h1, · · · , t + hn) and let Ht denote the distribution function of

(
T t(U0), T t+h1(U0), · · · , T t+hn(U0)

)
.

Then, for all (x0, · · · , xn) ∈ In+1,

Ht(x0, · · · , xn) =
∑

k∈K↑hn

P
(
U0 ∈ Ã↑hn,k

(x1:n)
⋂

[0, x0]
)

+
∑

k∈K↓hn

P
(
U0 ∈ Ã↓hn,k

(x1:n)
⋂

[0, x0]
)
, (4.1)

where

Ã↑hn,k
(x1:n) =

{ [
ahn,k−1, b

↑
hn,k

(x1:n)
]
, if k ∈ K↑hn

,

∅, otherwise,
(4.2)

and

Ã↓hn,k
(x1:n) =

{ [
b↓hn,k

(x1:n), ahn,k

]
, if k ∈ K↓hn

,

∅, otherwise,
(4.3)

with,
b↑hn,k

(x1:n) = min
i=1,··· ,n

{
c↑i (xi;hn, k)

}
and b↓hn,k

(x1:n) = min
i=1,··· ,n

{
c↓i (xi;hn, k)

}
(4.4)

where

c↑i (xi;hn, k) =

{
ahn,k−1, if B↑i (xi;hn, k) = ∅,

B↑i (xi;hn, k), otherwise,

c↓i (xi;hn, k) =

{
ahn,k, if B↓i (xi;hn, k) = ∅,

B↓i (xi;hn, k), otherwise,

B↑i (xi;hn, k) = min
j=1,··· ,shi

{
Thi,j(xi) : Thi,j(xi) > ahn,k−1 and ahi,j < ahn,k

}
,

and
B↓i (xi;hn, k) = max

j=1,··· ,shi

{
Thi,j(xi) : Thi,j(xi) < ahn,k and ahi,j > ahn,k−1

}
.

Proof: In view of Theorem 2.1, given t, h1, · · · , hn ∈ N, 0 < h1 < · · · < hn it suffices to prove
the result for the vector

(
T t(U0), T

t+h1(U0), · · · , T t+hn(U0)
)
. Let Ht denote the distribution

function of
(
T t(U0), T

t+h1(U0), · · · , T t+hn(U0)
)

and let x0:n ∈ (0, 1)n+1. Also, for the sake of

simplicity, let Yt := T t(U0). We have

Ht(x0, · · ·, xn) = P
(
T t(U0) ≤ x0, T t+h1(U0) ≤ x1, · · · , T t+hn(U0) ≤ xn

)
= P

(
Yt ≤ x0, Th1(Yt) ≤ x1, · · · , Thn(Yt)(U0) ≤ xn

)
= P

(
Yt ∈ [0, x0], Yt ∈

⋃ sh1

k=1

(
A↑h1,k

(x1)
⋃
A↓h1,k

(x1)
)
, · · · , Yt ∈

⋃ shn

k=1

(
A↑hn,k

(xn)
⋃
A↓hn,k

(xn)
))

= P
(
Yt ∈ [0, x0]

⋂ n
i=1

⋃ shi

k=1

(
A↑hi,k

(xi)
⋃
A↓hi,k

(xi)
))

= P
(
U0 ∈ [0, x0]

⋂ n
i=1

⋃ shi

k=1

(
A↑hi,k

(xi)
⋃
A↓hi,k

(xi)
))

(4.5)

= P
(
U0 ∈ [0, x0]

⋂ n
i=1

⋃ shi

k=1A
↑
hi,k

(xi)
)

+ P
(
U0 ∈ [0, x0]

⋂ n
i=1

⋃ shi

k=1A
↓
hi,k

(xi)
)
−

− P
(
U0 ∈ [0, x0]

⋂ n
i=1

⋃ shi

k=1

(
A↑hi,k

(xi)
⋂
A↓hi,k

(xi)
))
, (4.6)

where A↑hi,k and A↓hi,k are given in (3.3). The last term in (4.6) is equal to zero since the

non-atomicity of the distribution of U0 implies

P
(
U0 ∈ [0, x0]

⋂ n
i=1

⋃ shi

k=1

(
A↑hi,k

(xi)
⋂
A↓hi,k

(xi)
))
≤

≤ P
(
U0 ∈ [0, x0]

⋂ [(⋃ shn

k=0{ahn,k}
)⋃ (⋃ shn

k=1{Thn,k(x)}
)])

≤ P
(
U0 ∈

[(⋃ shn

k=0{ahn,k}
)⋃ (⋃ shn

k=1{Thn,k(x)}
)])

= 0.
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Considering K↑hn and K↓hn given by (2.1), let b↑hn,k(x1:n), b↓hn,k(x1:n), Ã↑hn,k(x1:n) and Ã↓hn,k(x1:n)

be as in the enunciate. Notice that Ã↑hn,k(x1:n) and Ã↓hn,k(x1:n) are both proper closed subsets

of [ahn,k−1, ahn,k]. Each b↑hn,k(x1:n) actually is the smallest Thi,j(xi) that lies on the k-th node

of T hn (which determines the thinner partition among all T hi), so that Ã↑hn,k(x1:n)’s are just

the intersection of all Ahi,k(xi)’s with the k-th node of T hn . In opposition, b↓hn,k(x1:n) is the

largest Thi,j(xi) that lies on the k-th node of T hn . Also notice that the Ã↑hn,k(x1:n)’s are pairwise

disjoint and so are the Ã↓hn,k(x1:n)’s. Now, with this machinery, we can rewrite (4.6) as

Ht(x0, · · · , xn) = P
(
U0 ∈

⋃
k∈K↑hn

Ã↑hn,k
(x1:n)

⋂
[0, x0]

)
+ P

(
U0 ∈

⋃
k∈K↓hn

Ã↓hn,k
(x1:n)

⋂
[0, x0]

)
=

∑
k∈K↑hn

P
(
U0 ∈ Ã↑hn,k

(x1:n)
⋂

[0, x0]
)

+
∑

k∈K↓hn

P
(
U0 ∈ Ã↓hn,k

(x1:n)
⋂

[0, x0]
)
,

which is the desired formula. �

Proposition 4.2. Let T ∈ T ↑
⋃

T ↓ and suppose T has s ≥ 1 nodes and denote by {at,k}s
t

k=0 the
net associated to the nodes of T t. Let t, h1, · · · , hn ∈ N, 0 < h1 < · · · < hn and Ht denote the
distribution function of

(
T t(U0), T

t+h1(U0), · · · , T t+hn(U0)
)
. Then, for all (x0, · · · , xn) ∈ In+1,

Ht(x0, · · · , xn) =

shn∑
k=1

P
(
U0 ∈ Ãhn,k(x1:n)

⋂
[0, x0]

)
, (4.7)

where

Ãhn,k(x1:n) =

{ [
ahn,k−1, b

↑
hn,k

(x1:n)
]
, if T ∈ T ↑,[

b↓hn,k
(x1:n), ahn,k

]
, if T ∈ T ↓,

(4.8)

with b↑hn,k(x1:n) and b↓hn,k(x1:n) given by (4.4).

Proof: With the notation of Proposition 4.1, the result follows by noticing that Ãhn,k is just
a combination of (4.2) and (4.3) and that if T ∈ T ↑, then K↓hn = ∅, while if T ∈ T ↑, we have

K↑hn = ∅. �

Proposition 4.3. Let T ∈ T l, µT be a T -invariant probability measure and let U0 be distributed
as µT . Then, for any t, h1, · · · , hn ∈ N, 0 < h1 < · · · < hn,(

T t(U0), T t+h1(U0), · · · , T t+hn(U0)
) d

=
(
U0, T

h1(U0), · · · , Thn(U0)
)
. (4.9)

Furthermore,
(
T t(U0), T

t+h1(U0), · · · , T t+hn(U0)
)

and
(
U0, T

h1(U0), · · · , T hn(U0)
)

have the same
copula.

Proof: Let Hh denote the distribution of
(
U0, T

h1(U0), · · · , T hn(U0)
)
. Notice that it suffices

to prove that, for any (x0, · · · , xn) ∈ In+1, Hh is equal to (4.5). Indeed, we have

Hh(x0, · · · , xn) = P
(
U0 ≤ x0, Th1(U0) ≤ x1, · · · , Thn(U0) ≤ xn

)
= P

(
U0∈ [0, x0], U0∈

⋃ sh1

k=1

(
A↑h1,k

(x1)
⋃
A↓h1,k

(x1)
)
, · · · , U0∈

⋃ shn

k=1

(
A↑hn,k

(xn)
⋃
A↓hn,k

(xn)
))

= P
(
U0 ∈ [0, x0]

⋂ n
i=1

⋃ shi

k=1

(
A↑hi,k

(xi)
⋃
A↓hi,k

(xi)
))
,

which is precisely (4.5). The other assertion follows from Sklar’s theorem in view of (4.9) and

from the fact that T t(U0)
d
= U0, for all t ∈ N. �
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Upon specializing the results seen so far, we can now determine the copulas associated to
multidimensional vectors coming from a T lϕ process with ϕ increasing almost everywhere starting
with the case T ∈T l\(T ↑

⋃
T ↓), which essentially embodies the other two cases.

Theorem 4.1. Let T ∈T l\(T ↑
⋃

T ↓), µT be a T -invariant probability measure and ϕ ∈ L1(µT )
be an almost everywhere increasing function. Let {Xt}t∈N be the associated T lϕ process. If we

let {ahn,k}s
hn

k=0 be the net associated to the nodes of T hn, and Ct be the copula associated to
(Xt, Xt+h1 , · · · , Xt+hn), for t, h1, · · · , hn ∈ N, 0 < h1 < · · · < hn, then

Ct(u0, · · · , un) =
∑
k∈n↑0

[
F0

(
r↑hn,k

(u1:n)
)
− F0(ahn,k−1)

]
+
∑
k∈n↓0

F0(ahn,k)− F0

(
r↓hn,k

(u1:n)
)

+

+
[

min
{
u0, F0

(
r↑hn,n0

(u1:n)
)}
− F0(ahn,n0−1)

]
δ
K
↑
hn

(n0) +

+ max
{

0, u0 − F0

(
r↓hn,n0

(u1:n)
)}
δ
K
↓
hn

(n0),

where n0 =
{
k : u0 ∈

(
F0(ahn,k−1), F0(ahn,k)

]}
, with K↑hn and K↓hn given in (2.1),

n↑0 = {1, · · · , n0 − 1}⋂K↑hn
, n↓0 = {1, · · · , n0 − 1}⋂K↓hn

,

with b↑hn,k and b↓hn,k given in (4.4),

r↑hn,k
(u1:n) = b↑hn,k

(
F−10 (u1:n)

)
and r↓hn,k

(u1:n) = b↓hn,k

(
F−10 (u1:n)

)
. (4.10)

Proof: In view of Proposition 4.3, we only need to show the result for the vector
(
U0, T

h1(U0),

· · · , T hn(U0)
)
, where h1, · · · , hn ∈ N, 0 < h1 < · · · < hn. Considering K↑hn and K↓hn as in

(2.1), let b↑hn,k(x1:n), b↓hn,k(x1:n), Ã↑hn,k(x1:n) and Ã↓hn,k(x1:n) be respectively as in (4.4), (4.2)

and (4.3). Set n1 =
{
k : x0 ∈ (ahn,k−1, ahn,k]

}
and let n↑1 = {1, · · · , n1 − 1}⋂K↑hn and n↓1 =

{1, · · · , n1 − 1}⋂K↓hn . Notice that n↑1
⋂
n↓1 = ∅ and n↑1

⋃
n↓1 = {1, · · · , n1 − 1}. We can now

rewrite (4.1), in view of Proposition 4.3 and setting h = (0, h1, · · · , hn), as

Hh(x0, · · · , xn) =
∑
k∈n↑1

µT

([
ahn,k−1, b

↑
hn,k

(x1:n)
])

+
∑
k∈n↓1

µT

([
b↓hn,k

(x1:n), ahn,k

])
+

+ µT

([
an1−1,min

{
x0, b

↑
hn,n1

(x1:n)
}])

δ
K
↑
hn

(n1) +

+ µT

([
b↓hn,n1

(x1:n), x0
])
δ
[b
↓
hn,n1

(x1:n),1]
(x0)δ

K
↓
hn

e(n1)

=
∑
k∈n↑1

[
F0

(
b↑hn,k

(x1:n)
)
− F0(ahn,k−1)

]
+
∑
k∈n↓1

[
F0(ahn,k)− F0

(
b↓hn,k

(x1:n)
)]

+

+
[
F0

(
min

{
x0, b

↑
hn,n1

(x1:n)
})
− F0(ahn,n1−1)

]
δ
K
↑
hn

(n1) +

+ max
{

0, F0(x0)− F0

(
b↓hn,n1

(x1:n)
)}
δ
K
↓
hn

(n1)

Now, by Sklar’s Theorem and (3.1), taking n0 =
{
k : u0 ∈

(
F0(ahn,k−1), F0(ahn,k)

]}
, it follows

that

Ch(u0, · · · , un) = Hh
(
F−10 (u0), · · · , F−10 (un)

)
=

∑
k∈n↑0

[
F0

(
r↑hn,k

(u1:n)
)
− F0(ahn,k−1)

]
+
∑
k∈n↓0

[
F0(ahn,k)− F0

(
r↓hn,k

(u1:n)
)]

+

+
[

min
{
u0, F0

(
r↑hn,n0

(u1:n)
)}
− F0(ahn,n0−1)

]
δ
K
↑
hn

(n0) +

+ max
{

0, u0 − F0

(
r↓hn,n0

(u1:n)
)}
δ
K
↓
hn

(n0),

where r↑hn,k and r↓hn,k are as in the enunciate. �
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From Proposition 4.1 we have all we need to work with the case T ∈ T ↑
⋃

T ↓. This is the
content of the next proposition.

Proposition 4.4. Let T ∈ T ↑
⋃

T ↓, µT be a T -invariant probability measure and ϕ ∈ L1(µT ) be
an almost everywhere increasing function. Let {Xt}t∈N be the associated T ↑ϕ or T ↓ϕ process. If

we let {ahn,k}s
hn

k=0 be the net associated to the nodes of T hn, and Ct be the copula associated to
(Xt, Xt+h1 , · · · , Xt+hn), for t, h1, · · · , hn ∈ N, 0 < h1 < · · · < hn, then

(i). if T ∈ T ↑,

Ct(u0, · · · , un) =

n0−1∑
k=1

[
F0

(
rhn,k(u1:n)

)
−F0(ahn,k−1)

]
+min

{
u0, F0

(
rhn,n0(u1:n)

)}
−F0(ahn,n0−1);

(ii). if T ∈ T ↓,

Ct(u0, · · · , un) =

n0−1∑
k=1

[
F0(ahn,k)− F0

(
rhn,k(u1:n)

)]
+ max

{
0, u0 − F0

(
rhn,n0

(u1:n)
)}
,

where n0 :=
{
k : u0 ∈

(
F0(ahn,k−1), F0(ahn,k)

]}
, b↑hn,k and b↓hn,k given in (4.4), and

rhn,k(u1:n) :=

{
b↑hn,k

(
F−10 (u1:n)

)
, if T ∈ T ↑,

b↓hn,k

(
F−10 (u1:n)

)
, if T ∈ T ↓.

Proof: We observe that rhn,k is just a combination of the two expressions in (4.10) and that if
T ∈ T ↑, then K↓hn = ∅, so that n↑0 = {1, · · · , n0 − 1} and n↓0 = ∅, while if T ∈ T ↓, then K↑hn = ∅
so that n↓0 = {1, · · · , n0 − 1} and n↑0 = ∅. With this in mind, the results follow directly from
Theorem 4.1. �

The generalization to the n-dimensional case for ϕ an almost surely decreasing function
leads to more complicated formulas in terms of the copulas in Theorem 4.1 and Proposition 4.4.
Although the set up here is much more general than the one in Lopes and Pumi (2013), it is
interesting to notice that the same result valid there can be applied here, so that we include it
just for the sake of completeness.

Proposition 4.5. Let T ∈ T l, µT be a T -invariant probability measure and let {Xt}t∈N be the
associated T lϕ process for ϕ ∈ L1(µT ) an almost surely decreasing function. Let t, h1, · · · , hn ∈ N,
0 < h1 < · · · < hn and set Yk := T hk(U0) and Y0 := U0. If we denote the copula associated to
(Xt, Xt+h1 , · · · , Xt+hn) by Ct, then the following relation holds

Ct(u0, · · · , un) = 1− n+

n∑
i=0

ui +

n∑
i=0

n∑
j=i+1

CYi,Yj (1− ui, 1− uj) + · · ·+

+ (−1)n−1
n∑

k1=0

n∑
k2=k1+1

· · ·
n∑

kn−1=kn−2+1

CYk1
,··· ,Ykn−1

(1− uk1 , · · · , 1− ukn−1)+

+ (−1)nCU0,Y1,··· ,Yn
(1− u0, · · · , 1− un), (4.11)

everywhere in In+1.

Proof: See Proposition 4.1 in Lopes and Pumi (2013). �

The copula in Proposition 4.5 can be explicitly calculated since (4.11) is written as sums of
the copulas of vectors containing U0 and T t(U0) for different t’s. Hence, Theorem 2.1 can be
applied to derive the desired formulas in terms of the copulas in Theorem 4.1 and Proposition
4.4.



16 Copulas Related to Piecewise Monotone Functions

Remark 4.1. In principle, we could have assumed T belonging to the slightly broader family
of C1

1-1 transformations. However, for T ∈ C1
1-1 \ C1+α

1-1 , if an absolutely continuous T -invariant
probability measure exists, it does not have a positive continuous Radon-Nikodym derivative.
This implies that F−10 is not always well defined. In this case one can substitute F−10 by its

pseudo-inverse, F
(−1)
0 . Since F0 ◦F (−1)

0 and F
(−1)
0 ◦F0 are not the identity map, the expressions

for the copulas become more complex. If T ∈ C1
1-1 \ C1+α

1-1 , the results in Sections 3 and 4 hold

if F−10 is substituted by F
(−1)
0 and expressions of the form F0

(
F

(−1)
0 (x)

)
and F

(−1)
0

(
F0(x)

)
will

appear instead of the identities F0

(
F−10 (x)

)
= x and F−10

(
F0(x)

)
= x.

5 Numerical Approximations and Computational Issues

Let T ∈ T l, h > 0, µT be a T -invariant probability measure and consider the associated
T lϕ process for ϕ ∈ L1(µT ) a monotone function. The computation and implementation of the
copulas derived in Sections 3 and 4 depend on the knowledge of several elements. These elements
are the invariant probability measure µT , the associated distribution function F0 and its inverse
F−10 , the inverse of T h in each branch ({Th,k}s

h

k=1) and the net {ah,k}s
h

k=0 associated to T h, where
s > 1 denotes, as usual, the number of branches of T .

As mentioned in Section 2, the general problem of determining the existence of a T -invariant
absolutely continuous probability measure is usually a hard one. Therefore, one rarely finds an
explicit formula for a T -invariant probability measure. Furthermore, although the computation
of T h(y) is usually straightforward, the exact calculation of Th,k(y) can be a highly complex
task. Even for small values of h, the apparently simple calculation of the net associated to T h

can be troublesome. Nevertheless, one can still rely on approximations in order to implement,
compute and study the copulas related to T lϕ processes.

With this in mind, our goal in this section is to present general results and conditions to
construct simple approximations to the copulas derived in Sections 3 and 4 in such a way to
guarantee its uniform convergence to the true copula.

5.1 Approximating the T -invariant probability measure and related functions

Perhaps the most appealing way to approximate a measure, assuming it is ergodic, is by using
Birkhoff’s ergodic theorem. Recall that a measure µ is called a Sinai-Bowen-Ruelle measure
(SBR, for short) if the weak convergence

1

n

n−1∑
k=0

δTk(x)(A) −→ µ(A) (5.1)

holds for almost all x ∈ I and all µ-continuity sets A. In this work, all the T -invariant proba-
bility measure discussed are assumed to be absolutely continuous with respect to the Lebesgue
measure. However, if µT is ergodic and absolutely continuous with respect to the Lebesgue mea-
sure, it is also an SBR measure (see, for instance, Keller, 1998), so that we will only consider
the latter more general case.

Given T ∈ T l and µT a T -invariant absolutely continuous SBR probability measure, one
way to approximate µT is by truncating expression (5.1) for a reasonably large value of n > 1.
That is, let x0 ∈ I be a point such that the weak convergence (5.1) holds. Set

µn(A;T, x0) :=
1

n

n−1∑
k=0

δTk(x0)(A), (5.2)

for all µT -continuity sets A. This is not the only way to approximate an SBR measure, see for
instance Lopes and Pumi (2013) and references therein. For simplicity and since no confusion
will arise, we shall drop T and x0 from the notation of µn.
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From µn, an approximation for F0 is obtained simply by setting F̂n(x) = µn
(
[0, x];T, x0

)
.

From a computational standpoint, fixed x0 and truncation point n > 0, to calculate µn for
different sets one needs to compute the iteration vector

(
x0, T (x0), · · · , Tn−1(x0)

)
only once.

Furthermore, by the choice of x0, T
i(x0) 6= T j(x0) for all i 6= j, therefore, F̂n will coincide with

the empirical distribution function based on the iteration vector. To improve the performance
pointwisely, one can use some interpolation method based on the iteration vector and F̂n. That
is, we choose a sequence of interpolating functions4 based on

(
x0, T (x0), · · · , Tn−1(x0)

)
and its

image by F̂n.

For approximations based on a vector of iterations, the limits taken are understood to be in
terms of partitions in the following manner. Starting with a set of points Rm = {x1, · · · , xm},
we consider refinements obtained by adding a single point to the set Rm. That is, we consider
refinements of the form Rm+1 = Rm

⋃ {xm+1}, · · · , Rm+k = Rm+k−1
⋃ {xm+k}. Let fm(·) :=

f( · ;Rm) be an approximation based on Rm. For a sequence of refinements {Rk}∞k=m+1 we
consider the sequence of functions {fk}∞k=m+1. If the sequence {fk}∞k=0 has a limit, we set
lim
m→∞

fm(·) := lim
m→∞

f( · ;Rm).

Proposition 5.1. Let S = {x1, · · · , xn} be a given (ordered) sample of some continuous and
monotone distribution F0 and let F̂n be the empirical distribution based on S. Let Fn be an
approximation based on a sequence of interpolating functions defined from S and let x0 = 0
and xn+1 = 1. Suppose that Fn satisfies, for each x ∈ (xi, xi + 1), Fn(x) ∈

(
F̂n(xi), F̂n(xi+1)

)
,

i = 0, · · · , n and Fn(xi) = F̂n(xi), for all i = 0, · · · , n+ 1. Then Fn(x)→ F0(x) uniformly over
x ∈ I. If, in addition, Fn is continuous and monotone, then also F−1n (x) → F−10 (x) uniformly
over x ∈ I.

Proof: By the Glivenko-Cantelli theorem, F̂n(x) → F0(x) uniformly in x ∈ [0, 1], so that,

given ε > 0, there exists n0 > 0 depending on ε only such that
∣∣F̂n(x) − F0(x)

∣∣ < ε/2, for all
x ∈ I, whenever n > n0. Now, for x ∈ [0, 1), there exists k ∈ {1, · · · , n} such that x ∈ [xk, xk+1)

and since Fn(x) ∈
[
F̂n(xi), F̂n(xi+1)

)
, if n > max{n0, d2/εe}, it follows that∣∣Fn(x)− F0(x)

∣∣ ≤ ∣∣Fn(x)− F̂n(x)
∣∣+
∣∣F̂n(x)− F0(x)

∣∣ < ∣∣F̂n(xk+1)− F̂n(xk)
∣∣+

ε

2

≤ sup
i=1,··· ,n−1

{∣∣F̂n(xi+1)− F̂n(xi)
∣∣}+

ε

2
≤ 1

n
+
ε

2
< ε,

uniformly in x ∈ [0, 1) and, by the continuity of F0, it holds uniformly in I.

As for the inverse, notice that, by hypothesis, F−1n is (uniformly) continuous and monotone.
Therefore, given ε > 0 and y ∈ I, there exists a δ > 0 (depending on ε only) such that

|x− y| < δ =⇒ |F−1n (x)− F−1n (y)| < ε.

By the Glivenko-Cantelli theorem, there exists n1 > 0 (depending on δ only) such that
∣∣Fn(x)−

F0(x)
∣∣ < δ, whenever n > n1, and the inequality holds for all x ∈ [0, 1]. Furthermore, the

monotonicity of F0 implies the existence of z0 ∈ [0, 1] such that y = F0(z0). Now, taking n > n1,
it follows that∣∣F−1n (y)− F−10 (y)

∣∣ =
∣∣F−1n

(
F0(z0)

)
− z0

∣∣ =
∣∣F−1n

(
F0(z0)

)
− F−1n

(
Fn(z0)

)∣∣ < ε,

and since n1 does not depend on y, the convergence is uniform. �

4by interpolation function, we mean a function f : [a, b] → [c, d] such that, given a collection of pairs P =
{(u1, v1), · · · , (un, vn)}, ui ∈ [a, b] and vi ∈ [c, d], i = 1, · · · , n, and a point x ∈ [a, b], f assigns a value f(x;P )
for each x ∈ [a, b] \ {u1, · · · , un} and f(ui;P ) = vi, for i = 1, · · · , n. A simple linear interpolation or a spline
interpolation are examples of such functions.
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Suppose that T has s > 1 nodes. There is no general optimal way of approximating the
net related to T h, for a given h > 1, so the task has to be handled case by case. A general
method, which may not be optimal in most cases, is as follows. Let S := {x1, · · · , xm} be an
ordered set of points in I and, to avoid trivialities, suppose that x1 = 0, xm = 1 and xi 6= xj , for
i, j = 1, · · · ,m, i 6= j. Let R denote the image of S by T h. The next step is to identify possible
intervals where the discontinuities of T h lie on, by using the elements of R. In order to do that,
S must reflect all the sh discontinuities of T h. Usually a relatively thin grid of equally spaced
points solves the problem (obviously, m > sh points should be used).

If T ∈ T ↑, the identification can be done in the following manner. Note first that ah,0 = 0

and ah,sh = 1, for any h. Let D+ =
{
i : T h(xi) > T h(xi+1)

}
⊂ {1, · · · ,m} and let {dj}s

h−1
j=1

denote the ordered elements of D+. The set D+ contains the indexes i ∈ {1, · · · ,m} for which
the interval [xdk , xdk+1

] contains the k-th discontinuity of T h. If T ∈ T ↓, we let D− =
{
i :

T h(xi) < T h(xi+1)
}

. If T ∈ T l \ (T ↑
⋃

T ↓), one has to define D as a mixture of D+ and D−.
One obvious way to detect a poor choice of S is the number of elements in the respective set
D+, D− or D, which should have exactly sh − 1 distinct points.

Once the intervals containing the discontinuities of T h are found, one can perform a simple
bisection, a golden search or any other root-finder algorithm to find an approximation to ah,k up
to a predetermined acceptable error. This gives an “instantaneous” estimate which, in terms of
precision, should not improve as the number of elements in S increases. However, given the fact
that, depending on the transformation, most of the times there are easier ways of calculating
an approximation to ah,k based on S, our results cover this possibility as well. See also Remark
5.1.

As an example of this possibility, we mention the method presented in Lopes and Pumi
(2013). Although presented in the context of Manneville-Pomeau transformations, it can be
extended to a broader family of transformations as follows. Consider transformations of the type
T (x) = g(x) (mod 1) for a suitable increasing and differentiable function g, such that T has s > 1
full branches. Let S and D+ be as before, and consider the function T ∗i,h : [xdi , xdi+1] → [0, 2]

given by T ∗i,h(x) := g
(
T h−1(x)

)
, for i = 1, · · · , sh − 2. Clearly T ∗i,h(xdi) < 1, T ∗i,h(xdi+1) > 1 and

Ths (x) = T ∗i,h(x)− δ[1,2]
(
T ∗i,h(x)

)
,

for all x ∈ [xdi , xdi+1]. We denote the approximation to ah,i, based on S, by amh,i, and define it
as the linear interpolation of 1 between the points

(
xdi , T

∗
i,h(xdi)

)
and

(
xdi+1, T

∗
i,h(xdi+1)

)
. This

approximation can be very crude if m is small, but the precision increases fast as m increases,
especially for large h. The method can be easily adapted to cover the cases where g is decreasing
and differentiable. In Section 6 we present a simpler example.

As for the approximation to Th,k, we shall use an interpolation argument based on a grid of

values from T h. Let S = {x1, x2, · · · , xm}, be an ordered set of points in I and assume that

x1 = 0, xm = 1 and xi 6= xj , for i, j = 1, · · · ,m, i 6= j. Suppose the net {ah,k}s
h

k=0 related to T h

is known or estimates based on S, say {amh,k}s
h

k=0, are available and satisfy, for all k = 0, · · · , sh,

amh,k → ah,k, as m tends to infinity. Let D+, D− or D, depending on the case, be given as before.

For i = 1, · · · , sh, let

Sh,i := {x(1)h,i , · · · , x
(pi)
h,i } := {amh,i−1, xdi+1, · · · , xdi+1

, amh,i}, (5.3)

Rh,i := {y(1)h,i , · · · , y
(pi)
h,i } :=

{
0, Th(xdi+1), · · · , Th(xdi+1

), 1
}
, (5.4)

and Oh,i :=
{

(y
(k)
h,i , x

(k)
h,i )
}pi
k=1

, where pi := di+1 − di + 2. Notice that the elements on Sh,i are

just the values among x1, · · · , xm that lie on the i-th node of T h and that Rh,i is the image

of Sh,i by T h. Suppose that a sequence of interpolation functions hi,m : I → [amh,i−1, a
m
h,i],

i = 1, · · · , sh, is given. Given y ∈ [0, 1] \ {T h(x1), · · · , T h(xm)}, there exists y
(k)
h,i ∈ Rh,i such
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that y ∈ (y
(k)
h,i , y

(k+1)
h,i ). We define an approximation to Th,k(y) based on S, which we denote by

T mh,i(y), simply by

T mh,i(y) := hi,m(y;Oh,i), (5.5)

for i = 1, · · · , sh.

Remark 5.1. The estimates amh,k and T mh,k are both assumed to be based on S. This is convenient
because it allows the following updating scheme to determine both approximations: given a
refinement of S, first we update the net, and secondly, the net new values are used to determine
the approximation to Th,k. This type of scheme can be applied very often in practice. The proofs
of the results in this section, however, assume solely that amh,k → ah,k, as m goes to infinity. The
inverse scheme (update T mh,k and then update amh,k) also works, because ah,k = Th,k(1), for

k = 1, · · · , sh, but it is computationally more delicate to implement than the former. This
happens because in updating T mh,k to, say, T m+1

h,k , one uses amh,k. Next, to obtain am+1
h,k , Tm+1

h,k is
applied which, by its turn, is based on the old value amh,k. To account for this discrepancy, a
posterior adjustment has to be made, but we shall not get into details here.

Proposition 5.2. Let T ∈ T l and suppose T has s > 1 branches. Let S = {x1, x2, · · · , xm}, be
an ordered set of points in I and assume that x1 = 0, xm = 1 and xi 6= xj, for i, j = 1, · · · ,m,

i 6= j. For h > 0, let {amh,j}s
h

j=0 be approximations to {ah,j}s
h

j=0 based on S such that amh,j → ah,j,

for all j = 0, · · · , sh, as m → ∞. Let Sh,i and Rh,i be as in (5.3) and (5.4), respectively.

For a sequence of interpolation functions {hi,m}s
h

i=1 based on S, let T mh,i be as in (5.5). If, for

all y ∈ (y
(k)
h,i , y

(k+1)
h,i ), T mh,i(y) ∈ (x

(k)
h,i , x

(k+1)
h,i ), for i = 1, · · · , sh and k ∈ {1, · · · , pi − 1}, then

T mh,i −→ Th,i uniformly, as m→∞.

Proof: The uniform continuity of Th,i implies that, for any given ε > 0, there exists a δ > 0
depending only on ε, such that

|x− y| < δ =⇒
∣∣Th,i(x)− Th,i(y)

∣∣ < ε, (5.6)

for all x ∈ I. Let S := {x1, · · · , xm0} be an ordered set of points in I and assume that x1 = 0,
xm0 = 1 and xi 6= xj , i, j = 1, · · · ,m0, i 6= j. Without loss of generality, assume that m0 > 0 is
such that

sup
i=1,··· ,m0−1

{
|xi+1 − xi

∣∣} < δ. (5.7)

For m > m0, let Sm = {x∗1, · · · , x∗m} ⊃ S be a size m refinement of S. By hypothesis, given
y ∈ (0, 1), for each i ∈ {1, · · · , sh}, there exists a k ∈ {1, · · · , pi − 1} such that T mh,i(y) ∈
(y

(k)
h,i , y

(k+1)
h,i ) =

(
Th,i(x

(k)
h,i ), Th,i(x

(k+1)
h,i )

)
. Also, since T ∈ T l, Th,i

(
x
(k)
h,i

)
≤ Th,i(y) < Th,i

(
x
(k+1)
h,i

)
,

so that, by (5.6) and (5.7),∣∣T mh,i(y)− Th,i(y)
∣∣ ≤ |Th,i

(
x
(k+1)
h,i

)
− Th,i

(
x
(k)
h,i

)
|

≤ sup
j=1,··· ,m−1

{∣∣Th,i(xj+1)− Th,i(xj)
∣∣} < ε,

independently of y ∈ (0, 1). For y ∈ {0, 1}, by definition T mh,i(y) = Th,i(y), so that the result
holds uniformly for all y ∈ I. �

5.2 Approximating the copulas

In this subsection we present a general approximation for the copulas in Section 3 and prove
its uniform convergence to the true copula. As mentioned before, the formulas for the copulas
presented in Remark 3.5 are the ones used for approximation purposes. Although we could
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proceed by using the approximations developed in the last subsection, our convergence results
hold in a more general setting. Let T ∈ T l \ (T ↑

⋃
T ↓) and µT be a T -invariant probability

measure. Let ϕ ∈ L1(µT ) and {Xt}t∈N be the associated T lϕ process. Let µn be an approximation

to µT and let Fn and F−1n be approximations to F0 and F−10 , respectively. Suppose T has s > 1

nodes and, for h > 0, let {amh,i}s
h

i=0 be an approximation to the net related to T h. Also let T mh,i
be an approximation to Th,i, i = 1, · · · , sh. Define, for all u, v ∈ I,

Clm,n(u, v;h) =
∑
k∈n↑0

µn

([
amh,k−1, T mh,k

(
F−1n (v)

)])
+
∑
k∈n↓0

µn

([
T mh,k

(
F−1n (v)

)
, amh,k

])
+

+ µn

([
amh,n̂0−1,min

{
F−1n (u), T mh,n̂0

(
F−1n (v)

)}])
δ
K
↑
h

(n̂0) +

+µn

([
T mh,n̂0

(
F−1n (v)

)
, F−1n (u)

]+)
δ
K
↓
h

(n̂0), (5.8)

where n̂0 = n0(m,n) =
{
k : u ∈

[
Fn(amh,k), Fn(amh,k+1)

)}
. Expression (5.8) can be used as

an approximation to ClXt,Xt+h
in (3.6), for t ≥ 0. In the next theorem, we show that, under

certain simple conditions on the approximations in (5.8), Clm,n(u, v)→ ClXt,Xt+h
(u, v) uniformly

in (u, v) ∈ I2 as m and n go to infinity.

Theorem 5.1. Let T ∈ T l \ (T ↑
⋃

T ↓) and µT be a T -invariant probability measure. Let ϕ ∈
L1(µT ) be an almost everywhere increasing function and let {Xt}t∈N be the T lϕ associated process.
Let µn be a sequence of measures converging weakly to µT and let Fn and F−1n be approximations
to F0 and F−10 , respectively, such that Fn → F0 and F−1n → F−10 uniformly. Suppose T has

s > 1 nodes and, for h > 1, let {amh,i}s
h

i=0 be an approximation to the net related to T h such that

amh,i → ah,i, for all i = 0, · · · , sh, as m goes to infinity. Also let {T mh,i}s
h

i=1 be an approximation

to {Th,i}s
h

i=1 and suppose T mh,i → Th,i uniformly for all i = 1, · · · , sh. Let Clm,n be given by (5.8)

with the approximations just defined. Then, for all (u, v) ∈ I2,

lim
n→∞

lim
m→∞

Clm,n(u, v;h) = lim
m→∞

lim
n→∞

Clm,n(u, v;h) = lim
m,n→∞

Clm,n(u, v;h),

and the common limit is ClXt,Xt+h
(u, v) given by (3.6), for all t > 0. Furthermore, the limits

above are uniform in (u, v).

Proof: The hypothesis on the approximations in expression (5.8), allow us to apply Lemma
5.1 in Lopes and Pumi (2013) to conclude that, for any k,

lim
m,n→∞

µn

([
amh,k−1, T mh,k

(
F−1n (v)

)])
= µT

([
ah,k−1, Th,k

(
F−10 (v)

)])
,

and, by the same argument,

lim
m,n→∞

µn

([
T mh,k

(
F−1n (v)

)
, amh,k

])
= µT

([
Th,k

(
F−10 (v)

)
, ah,k

])
.

From the same lemma we also conclude that the iterated limits exist and are equal to the double
ones above and all limits are uniform in v. By using the same argument as in the proof of
Theorem 5.1 in Lopes and Pumi (2013), we conclude that

lim
m,n→∞

µn

([
amh,n̂0−1,min

{
F−1n (u), T mh,n̂0

(
F−1n (v)

)}])
= µT

([
ah,n0−1,min

{
F−10 (u), Th,n0

(
F−10 (v)

)}])
,

and that the iterated limits are equal to the double one above. Furthermore, the limits are all
uniform in u, v ∈ I. So, it remains to show that

lim
m,n→∞

µn

([
T mh,n̂0

(
F−1n (v)

)
, F−1n (u)

]+)
= µT

([
Th,n0

(
F−10 (v)

)
, F−10 (u)

]+)
,
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uniformly and that the iterated limits are equal to the double one. First, the existence and the
uniform convergence of the iterated limits follow by the same argument in the proof of Lemma
5.1 in Lopes and Pumi (2013). As for the double limit, by the hypothesis on µT , the Radon-
Nikodym theorem applies and implies the existence of a non-negative bounded (since we are
restricted to I) continuous function h such that, for any A ∈ B(I),

µT (A) =

∫
A

h(x)dλ ≤Mλ(A),

where M = sup
x∈I
{h(x)} <∞. Now, the uniform convergence of F−1n to F−10 implies the existence

of n0 > 0 such that, if n > n0, F
−1
n (u) ∈ K(ε) := [F−10 (u)− ε/10M,F−10 (u) + ε/10M ] and

µT
(
K(ε)

)
≤Mλ

(
K(ε)

)
=
ε

5
,

for all u ∈ I. The rest of the proof is carried out by mimicking the proof of Lemma 5.1 in Lopes
and Pumi (2013) upon substituting K1(ε) there by K(ε) just defined and noticing that n0 here
plays the role of m1 there. This completes the proof of the theorem. �

From Theorem 5.1, we derive approximations to the copulas in the case T ∈ T l \ (T ↑
⋃

T ↓)
given in (3.8) and (3.9).

Corollary 5.1. Let T ∈ T ↑
⋃

T ↓ and µT be a T -invariant probability measure. Let ϕ ∈ L1(µT )
be an almost everywhere increasing function and let {Xt}∞t=0 be the T ↓ϕ or T ↑ϕ associated pro-

cess. Let {µn}∞n=1 be a sequence of measures converging weakly to µT and let Fn and F−1n be

approximations to F0 and F−10 , respectively, such that Fn → F0 and F−1n → F−10 uniformly.

Suppose T has s > 1 nodes and, for h > 1, let {amh,i}s
h

i=0 be an approximation to the net related

to T h such that amh,i → ah,i, for all i = 0, · · · , sh, as m goes to infinity. Also let {T mh,i}s
h

i=1 be an

approximation to {Th,i}s
h

i=1 and suppose T mh,i → Th,i uniformly for all i = 1, · · · , sh.

(i). If T ∈ T ↑, then, for all (u, v) ∈ I2,

C↑m,n(u, v;h) =

n̂0−1∑
k=1

µn

([
amh,k−1, T mh,k

(
F−1n (v)

)])
δN∗(n̂0 − 1) +

+ µn

([
amh,n̂0−1,min

{
F−1n (u), T mh,n̂0

(
F−1n (v)

)}])
is an approximation to the copula (3.8),

lim
n→∞

lim
m→∞

C↑m,n(u, v;h) = lim
m→∞

lim
n→∞

C↑m,n(u, v;h) = lim
m,n→∞

C↑m,n(u, v;h),

and the common limit is C↑Xt,Xt+h
(u, v) given by (3.8).

(ii). If T ∈ T ↓, then, for all (u, v) ∈ I2,

C↓m,n(u, v;h) =

n̂0−1∑
k=1

µn

([
T mh,k

(
F−1n (v)

)
, amh,k

])
δN∗(n̂0 − 1) + µn

([
T mh,n̂0

(
F−1n (v)

)
, F−1n (u)

]+)
is an approximation to the copula (3.9),

lim
n→∞

lim
m→∞

C↓m,n(u, v;h) = lim
m→∞

lim
n→∞

C↓m,n(u, v;h) = lim
m,n→∞

C↓m,n(u, v;h),

and the common limit is C↓Xt,Xt+h
(u, v) given by (3.9). Furthermore, in all cases the limits are

uniform in (u, v).
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Proof: If T ∈ T ↑, (i) follows from Theorem 5.1 by noticing that K↓h = ∅, while if T ∈ T ↓, the
opposite happens, namely, K↑h = ∅, which implies (ii). �

As an application of Theorem 5.1 and Lemma 3.3, we obtain the approximations for the
copulas in the case where ϕ is an almost everywhere decreasing function.

Corollary 5.2. Let T ∈ T l and µT be a T -invariant probability measure. Let ϕ ∈ L1(µT ) be an
almost everywhere decreasing function and let {Xt}∞t=0 be the T lϕ associated process. Let µn be a
sequence of measures converging weakly to µT and let Fn and F−1n be approximations to F0 and
F−10 , respectively, such that Fn → F0 and F−1n → F−10 uniformly. Suppose T has s > 1 nodes

and, for h > 1, let {amh,i}s
h

i=0 be an approximation to the net related to T h such that amh,i → ah,i,

for all i = 0, · · · , sh, as m goes to infinity. Also let {T mh,i}s
h

i=1 be an approximation to {Th,i}s
h

i=1

and suppose T mh,i → Th,i uniformly for all i = 1, · · · , sh. For all (u, v) ∈ I2, let

Cl∗m,n(u, v;h) = u+ v − 1 + Clm,n(1− u, 1− v;h),

C↑∗m,n(u, v;h) = u+ v − 1 + C↑m,n(1− u, 1− v;h),

and
C↓∗m,n(u, v;h) = u+ v − 1 + C↓m,n(1− u, 1− v;h).

Then
lim
n→∞

lim
m→∞

Cl∗m,n(u, v;h) = lim
m→∞

lim
n→∞

Cl∗m,n(u, v;h) = lim
m,n→∞

Cl∗m,n(u, v;h),

and the common limit is Cl∗Xt,Xt+h
(u, v) given by (3.12),

lim
n→∞

lim
m→∞

C↑∗m,n(u, v;h) = lim
m→∞

lim
n→∞

C↑∗m,n(u, v;h) = lim
m,n→∞

C↑∗m,n(u, v;h),

and the common limit is C↑∗Xt,Xt+h
(u, v) given by (3.14),

lim
n→∞

lim
m→∞

C↓∗m,n(u, v;h) = lim
m→∞

lim
n→∞

C↓∗m,n(u, v;h) = lim
m,n→∞

C↓∗m,n(u, v;h),

and the common limit is C↓∗Xt,Xt+h
(u, v) given by (3.15). Furthermore, all the above limits are

uniform in (u, v) ∈ I2.

Proof: Immediate application of Theorem 5.1 and Lemma 3.3. �

Remark 5.2. The uniform convergence of the approximations is a crucial hypothesis for the
results in this subsection and cannot be dropped. Nevertheless, if the uniform convergence of
any of the approximations for F0, F

−1
0 or Th,i is violated, but the pointwise convergence to its

target is maintained, the results of Theorem 5.1 and its corollaries will hold pointwisely instead
of uniformly. The proof of Theorem 5.1 can be easily adapted to cover this case and the details
are left to the reader. We observe that the approximations developed in Subsection 5.1 satisfy
the conditions of the theorems presented in this section.

5.3 Random Variate Generation

In view of Proposition 3.6, obtaining a random sample from the copulas derived in Section 3
is a trivial task. Given T ∈ T l a transformation with s > 1 nodes, let µT be a T -invariant
probability measure and ϕ ∈ L1(µT ) be an almost everywhere increasing function. Let {Xt}t∈N
be the associated T lϕ process and let {ah,k}s

h

k=0 be the net associated to the nodes of T h, for

h > 0. Let ClXt,Xt+h
denote the copula associated to {Xt}t∈N. To obtain a random pair from

ClXt,Xt+h
, the following simple algorithm can be used:
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1. Generate an uniform (0, 1) variate u.

2. Let k0 be the index for which u ∈
[
F0(ah,k0−1), F0(ah,k0)

)
. Set

v :=

{
`↑h,k0(u), if k0 ∈ K↑h;

`↓h,k0(u), if k0 ∈ K↓h.

3. The desired pair is (u, v).

Also notice that given two transformations T1, T2 ∈ T l such that both have the same dis-
continuity points and, in each node, they are either both increasing or both decreasing, then a
sample from the copula related to one of the respective T ↑ϕ processes cannot be distinguished
from a sample to the other. This is so because from Proposition 3.6 both copulas have the same
support, which, in this case, ultimately characterizes the sample.

Remark 5.3. By using a similar argument as in Proposition 3.6 associated with a cumbersome
analysis of the possible cases, the support of the copulas derived in Section 5 can be obtained
as well. Samples from those multidimensional copulas can be obtained in a similar fashion as in
the bidimensional case.

6 Examples

In this section we present two examples of the copulas derived in the last sections. We concentrate
ourselves on the bidimensional case, especially because there is no simple graphical represen-
tation of copulas in dimension higher than 2. The first presented example is the Manneville-
Pomeau copula (MP copula for short) extracted from Lopes and Pumi (2013).

Example 6.1. For s > 0, consider the so-called Manneville Pomeau transformation Ts : I → I,
given by

Ts(x) = x+ x1+s(mod 1).

Figure 1 shows the plot of the Manneville-Pomeau transformation for s ∈ {0.1, 0.5, 0.8}. If
s ∈ (0, 1), there exists an absolutely continuous Ts-invariant probability measure, say µs, so that
Ts ∈ T ↑. The MP copula is, therefore, given by (3.8), although a slightly different notation for
n0 is adopted in Lopes and Pumi (2013). No closed formula for µs is known, but it can be shown
that µs is an SBR measure.

To approximate the MP copulas, the authors apply similar ideas to the ones presented here.
To approximate µs, the authors use (5.2) and to approximate F−10 , a local linear interpolation
function is applied. To approximate the net related to T hs and Th,k, the same scheme presented
here, with a local linear interpolation function, is considered. For more details, see Lopes and
Pumi (2013).

The next example is related to the well known Tent transformation (see Lopes and Lopes,
1998 and references therein).

Example 6.2. For a ∈ (0, 1), consider the piecewise linear transformation Ta : I → I given by

Ta(x) :=


x

a
, if 0 ≤ x < a,

1− x
1− a

, if a ≤ x ≤ 1.

This is the so-called Tent transformation. Figure 6.1 presents the graphs of the Tent trans-
formation for a ∈ {0.1, 0.5, 0.8}, where it can be seen that Ta has s = 2 full branches. Also,
Ta ∈ T l \ (T ↑

⋃
T ↓), since it can be shown that the Lebesgue measure in I2 is a Ta-invariant
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Figure 6.1: Plot of the Manneville-Pomeau transformation for s ∈ {0.1, 0.5, 0.8} and the Tent transformation
for a ∈ {0.1, 0.5, 0.8}.

Figure 6.2: From left to right, three dimensional plots of the lag 1 and lag 2 Tent copula for a ∈ {0.2, 0.7} (top
panel) and respective level curves (bottom panel).

probability measure. This implies that F0(x) = x and F−10 (y) = y everywhere. Let {Xt}t∈N be

the T lϕ process associated to Ta, with ϕ increasing almost everywhere. It is easy to see that, for
any h > 0 and t ≥ 0, the copula related to the pair (Xt, Xt+h), referred here as the lag h Tent
copula, is given by

CXt,Xt+h
(u, v) =

∑
k∈n↑0

(
Th,k(v)− ah,k−1

)
+
[
min

{
u, Th,n0(v)

}
− ah,n0−1

]
δ
K
↑
h

(n0) +

+
∑
k∈n↓0

(
ah,k − Th,k(v)

)
+ max

{
0, u− Th,n0

(v)
}
δ
K
↓
h

(n0),

where K↑h contains the odd numbers in {1, · · · , 2h} and K↓h contains the even ones. Also notice
that both, the net related to T h and Th,k, can be determined exactly since, being each branch
a linear function, any two points in the node suffice to give all information on the function
to determine Th,k and ah,k. In this context, linear interpolation produces exact, instead of
approximate, results.

Figure 6.2 shows the tree dimensional graphs of the lag 1 and 2 Tent copula for a ∈ {0.2, 0.7}
and its level curves. At the top panel of Figure 6.3, we present 500 sample points for the lag
1 and 2 Tent copula for a ∈ {0.2, 0.7} and at the bottom panel, for the lag 7 Tent copula for
a ∈ {0.2, 0.4, 0.5, 0.7}. Notice that, for small values of h, the sample resembles its support, but
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as h increases, it becomes hard to guess whether the sample came from a singular copula or
from a continuous one.

The case h = 1 is very simple and the Tent copula can be easily calculated. In this case,
the copula coincides with the one presented in Example 3.3 in Nelsen (2006). In the aforemen-
tioned example, the copula is derived by using a purely geometrical argument based only on the
support, which coincides with the support of the lag 1 Tent copula. More details on the Tent
transformation can also be found in Lopes and Lopes (1998) and references therein.

Figure 6.3: 500 sample points from the lag 1 and 2 Tent copula for a ∈ {0.2, 0.7} (top panel) and the lag 7 Tent
copula for a ∈ {0.2, 0.4, 0.5, 0.7} (bottom panel).

7 Application

Let Tθ ∈ T l, for θ ∈ S ⊆ Rp, p ≥ 1, with s > 1 nodes. In this section we apply the general
theory of Section 3 to the problem of estimating the parameter θ based on a sample path of
the associated T lϕ process {Xt}t∈N, assuming that the parameter is identifiable through the
knowledge of the discontinuity points of Tθ. The idea is to generalize the method described in
Lopes and Pumi (2013), but the task will heavily depend on the transformation at hand. The
general idea is as follows. According to Proposition 3.6, the support of the copula associated to a
pair (Xt, Xt+1) from the T lϕ process is the graph of a piecewise linear function joining consecutive
points of the net and its image by Tθ (equal to either 0 or 1). Let Lθ denote this function. This
implies that all points in a sample from the lag 1 copula lie on the graph of Lθ. Suppose for the
moment that ϕ is the identity map and let x1, · · · , xN be a sample from the process Xt. Let
uk :=

(
F0(xk), F0(xk+1)

)
, k = 1, · · · , N − 1, where F0 denotes the distribution of X0 (for now,

assume it is known). By Sklar’s theorem, the sequence {uk}N−1k=0 can be regarded as correlated
sample from the lag 1 copula associated to the T lϕ process. Often this simple situation makes
an estimation possible.

Suppose that closed formulas for F0(·;θ) and Lθ, which may depend on θ, are available.
Then the reasoning on the previous paragraph suggests the following optimization procedure
to obtain an estimate θ̂ of θ. Let x1, · · · , xN be a sample from the T lϕ process and assume
that we have at least two points in each branch of Tθ. Let D(·, ·) : RN−1 × RN−1 → R be a
given function measuring the distance between two vectors in RN−1. With the notation on the
beginning of Section 4, we define the estimate of θ by

θ̂ := argmin
θ∈S

{
D
(
F0(x2:N ;θ), Lθ(x1:N−1)

)}
. (7.9)
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Usual choices of D are D(x,y) =
∑N−1

k=1 (xk − yk)
2 and D(x,y) =

∑N−1
k=1 |xk − yk|, where

x,y ∈ RN−1. The optimization procedure (7.9) is justified by noticing that for the correct
θ,
(
F0(xk;θ), F0(xk+1;θ)

)
=
(
F0(xk;θ), Lθ

(
F0(xk+1;θ)

))
, for all k, while for a misspecified

θ, the equality does not hold. Most of the times, however, the particular form of F0 is not
known and often the net cannot be obtained analytically. This is the case of the Manneville-
Pomeau transformation, for instance. A solution for this problem is to use approximations for
F0 and {ak}sk=0 in the spirit of Subsection 5.1. However, an optimization procedure such as (7.9)
performed by using the approximations of Subsection 5.1 may be computationally too expensive
for all practical purposes, so we shall seek for another faster estimation method.

In practice many different situations may occur. For instance, if Ta is the Tent transformation
in Example 6.2, then F0 is the identity map, so that uk = (xk, xk+1) in the notation of the
previous paragraph. This means that any two points uk in the same branch are sufficient to
obtain the parameter a.

Another method can be devised upon noticing that the net of Tθ and the net of Lθ (whose
graph is the support of the copula C associated to the T lϕ process) are the same. Let vk :=
(xk, xk+1), k = 1, · · · , N − 1. By Sklar’s theorem, the points {vk}N−1k=1 lie on the graph of Tθ.
At this point, it could be possible in some cases to obtain θ by a more direct argument (see
Example 7.1) or by applying an argument such as the preceding paragraphs. That is, for D a
function as above, θ can be obtained by performing the optimization procedure

θ̂ := argmin
θ∈S

{
D
(
x2:N , Tθ(x1:N−1)

)}
.

The methods above may not be applicable or may fail, especially for high values of s. In
this case another computationally fast method is obtained by adapting the argument in Lopes
and Pumi (2013). Let Tθ ∈ T l, with s > 1 branches and θ := (θ1, · · · , θp) ∈ S ⊆ Rp, for
1 ≤ p ≤ s − 1. Let {ak}sk=0 denote the net associated to Tθ. Suppose that θ can be uniquely
determined by the knowledge of the net {ak}sk=0 in the sense that, given {ak}sk=0, θ can be
computed. That is, θ := f(a0, · · · , as), where f : Is+1 → S is a known smooth function. Notice
that we allow for θi to be obtainable from two or more different ak’s as long as the value of θi
agree in all cases. Let {Xt}t∈N be the associated T lϕ process, assuming that ϕ is the identity
map. The goal is to estimate the parameter θ based on a sample x1, · · · , xN from the process
Xt.

Given that Tθ ∈ T l, F0 is generally smooth so that, near {ak}sk=0, Tθ should locally behave
like a linear function. With this in mind, the estimation of θ can be performed as follows.
Let {Ik}sk=1 be the nodes relative to Tθ. Let Pk := {xm+1 : xm ∈ Ik,m = 1, · · · , N − 1},
k = 1, · · · , s. Notice that, if xm ∈ Pk, vm lies on the graph of the k-th branch of Tθ. Set
x+k := max{x : x ∈ Pk} and x−k := min{x : x ∈ Pk}. Let

ãk(y) :=
y − βk
αk

, where αk :=
Tθ(x

+
k )−Tθ(x−

k )

x+
k−x

−
k

and βk := Tθ(x+k )− αkx+k .

Notice that for each y ∈ R, ãk(y) is the inverse image of y by the linear function connecting(
x−k , Tθ(x−k )

)
and

(
x+k , Tθ(x+k )

)
. For k ∈ {1, · · · , s− 1}, we define the estimator âk of ak by

âk :=

{
ãk(1), if Tθ is increasing in Ik,

ãk(0), if Tθ is decreasing in Ik.
(7.10)

Once we have the estimates {âk}s−1k=1 (recall that a0 = 0 and as = 1), we obtain the estimate

θ̂ := f(0, â1, · · · , âs−1, 1).

Remark 7.1. Notice that by inverting the roles of ãk(0) and ãk(1) in (7.10) we obtain an
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estimate of ak−1. That is, for k ∈ {2, · · · , s}, define

âk−1 :=

{
ãk(0), if Tθ is increasing in Ik,

ãk(1), if Tθ is decreasing in Ik.
(7.11)

Thus, for each k = 2, · · · , s− 1 we obtain an estimate of ak from Ik by using (7.10) and another
one from Ik+1 by using (7.11). Of course, the net related to Tθ is unique and we assume that
θ is uniquely determined by the knowledge of the net, but in practice, the estimates (7.10)
and (7.11) usually do not agree. This implies that the estimated value of θ depends on which
estimator we apply. Hence, the question which one provides better results is a valid one. The
answer is intuitive: the “best” one is usually the one obtained from the node which is closer to a
straight line and for which the points vk’s are closer to (ak, 0) and (ak+1, 1). In this case the line
connecting

(
x−k , Tθ(x−k )

)
and

(
x+k , Tθ(x+k )

)
is “closer” to the respective branch of the copula’s

support.

Example 7.1. Let a ∈ [0, 1] and b ∈ (0, 1) and consider the map

Ta,b(x) :=

{
fa(x)(mod1), if 0 ≤ x < 1

2 ,
(2−b)(1−x)
1−b+bx , if 1

2 ≤ x ≤ 1,
(7.12)

where fa(x) := 2[2− 0.6a sin(2.1a)]x+ 0.6a sin(4.2ax). The map Ta,b has 3 full branches, two of
them are increasing and one is decreasing. Figure 7.4(a) presents the typical graph of Ta,b. It is
easy to see that Ta,b is uniformly expanding and it can be shown that there exists an absolutely
continuous Ta,b-invariant probability measure (cf. Theorem 1 and Remark 1 in Pianigiani, 1980)
and so Ta,b ∈ T l. Let {Xt}t∈N be the associated T lϕ process. A sample of size 100 from the T lϕ
process with a = b = 0.9, for ϕ the identity map is shown in Figure 7.4(b).

(a) (b) (c)

Figure 7.4: (a) A typical graph of Ta,b; (b) A sample of size 100 from the T lϕ process with a = b = 0.9 for ϕ the
identity map and X0 = 0.385969; (c) Behavior of the estimators â1 and â2 as a function of the initial point x0.
The parameters are a = 0.3 and b = 0.5 in all cases.

To exemplify the estimation procedure developed in this section, we perform the following
Monte Carlo simulation study. For 100 randomly chosen initial points5, we simulate a sample
of size 100 from the T lϕ process {Xt}t∈N for all combinations of parameters a and b ranging over
the set {0.1, 0.3, 0.5, 0.7, 0.9}. For simplicity, let {d0, · · · , d3} denote the net of Ta,b. In this case
d0 = 0, d2 = 0.5 and d3 = 1, so that d1 is the only discontinuity to be estimated. This estimation

5in theory, each point should be irrational, but since computers can only express rational numbers, these should
be chosen “as irrational as possible” in the sense to use all possible decimal points allowed under the machine’s
precision to express an irrational number
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Table 7.1: Simulation results based on samples of size 100 of the T lϕ process associated to (7.12) for 100
randomly chosen initial points and parameters a and b ranging over the set {0.1, 0.3, 0.5, 0.7, 0.9}. Presented are
the estimated values and the respective mean square error (×10−4) in parenthesis.

b 0.1 0.3 0.5 0.7 0.9

a â1 â2 â1 â2 â1 â2 â1 â2 â1 â2

0.1
0.1005 0.1011 0.1007 0.1012 0.1005 0.1011 0.1005 0.1011 0.1005 0.1011

(0.0045) (0.0251) (0.0089) (0.0303) (0.0055) (0.0224) (0.0054) (0.0248) (0.0039) (0.0241)

0.3
0.3018 0.3040 0.3019 0.3045 0.3017 0.3039 0.3016 0.3033 0.3015 0.3035

(0.0589) (0.2491) (0.0690) (0.3625) (0.0585) (0.3394) (0.0486) (0.2056) (0.0439) (0.2462)

0.5
0.5033 0.5064 0.5027 0.5072 0.5024 0.5054 0.5027 0.5054 0.5030 0.5064

(0.2031) (0.7755) (0.1332) (1.1065) (0.0924) (0.5878) (0.1215) (0.6567) (0.1528) (0.9126)

0.7
0.7046 0.7130 0.7039 0.7097 0.7042 0.7099 0.7040 0.7087 0.7044 0.7090

(0.3845) (2.9859) (0.2515) (1.8811) (0.3369) (2.2650) (0.2767) (1.3976) (0.3638) (1.5546)

0.9
0.9051 0.9185 0.9043 0.9172 0.9049 0.9174 0.9050 0.9182 0.9049 0.9162

(0.4326) (5.9339) (0.3095) (6.3317) (0.4276) (6.8437) (0.4598) (7.0888) (0.5110) (4.2946)

is performed by using the two methods (7.10) based on the first branch and (7.11) based on

the second branch, the estimators of d1 being denoted by d̂
(1)
1 and d̂

(2)
1 , respectively. From d̂

(1)
1

and d̂
(2)
1 , we set âi := f−1a (d

(i)
1 ), i = 1, 2, where the inverse of fa is obtained numerically. The

parameter b needs no estimation since it can be exactly calculated by noticing that for a pair

(xk, xk+1), with 0.5 < xk < 1, b is exactly obtained by the formula b =
2(1−xk)−xk+1

(1−xk)(1−xk+1)
.

The simulation results are reported in Table 7.1, where the mean estimated value along with
its mean square error (values in parenthesis ×10−4) are presented. The overall performance of
â1 and â2 are very good with small bias and small variability. As expected (see Remark 7.1
and Figure 7.4(a)), â1 outperforms â2 since the first branch of Ta,b is “closer” to linear than
the second one. Both estimators always overestimate the true parameter. The behavior of the
estimators â1 and â2 as a function of the initial point x0 for a = 0.3 and b = 0.5 are presented
in Figure 7.4(c). Also notice that the particular value of the parameter b does not significantly
affects the estimation of parameter a.

8 Conclusions

In this work we study the copulas related to pairs and vectors of random variables coming
from a class of stochastic processes defined in terms of iterations of a certain smooth piecewise
monotonic transformation of the interval to some initial random variable. More specifically,
we study the copulas related to random variables coming from a stochastic process defined as
Xt = ϕ

(
T t(U0)

)
for T a piecewise monotonic transformation of the interval, U0 an initial random

variable distributed according to a T -invariant probability measure and a smooth function ϕ :
[0, 1]→ R, taken to be monotonic. We show that the copulas depend only on the lag h between
components and we derived formulas and properties for both, the joint distribution function
and the copulas for pairs of random variables coming from the process {Xt}t∈N. As expected,
the copulas heavily depend on the T -invariant probability measure. The multidimensional case
is similar to the bidimensional one so we follow the same agenda as in the latter and we are
able to show analogous results. We notice the similarities among the results of Sections 3 and
4 when ϕ is increasing. For ϕ decreasing, the multidimensional case poses some difficulties
which ultimately lead to more complicated formulas compared to the bidimensional case. We
also discuss random variate generation and approximations for the copulas derived on Section 3.
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The general theory is applied to the problem of parametric estimation in T lϕ processes. Examples
and a simple Monte Carlo study are also provided.
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